工业40蓄势待发,工业制造领域的大变局意味着中国有机会将过去几十年来积累的制造经验转化成创造的基础,复杂的制造业场景给了企业更多创新的机会。
在此之中,软件工程师扮演着什么样的角色?什么是工业物联网的基础设施?
“物联市场 线上对谈”是由边无际发起的立足物联网行业的访谈栏目,第一期邀请到零碳数科CEO闫保磊,与边无际CEO陈永立、边无际COO郑凯文一起畅聊工业物联网的行业现状与软件平台的解决方案。
郭琦:请闫总介绍一下零碳数科。
闫保磊:零碳数科是一家工业互联网平台企业。从名称上讲,数科和零碳揭示了我们的特色,数科寓意数智化,零碳寓意碳中和,我们认为二者相得益彰。因此,我们研发的产品和技术致力于实现产业链供应链的数智化和低碳化转型,目前主要切入四个领域,分别是能源管理、碳管理、供应链管理以及智能制造。我们的愿景是打造“立足中国·服务世界”的跨行业跨领域的工业互联网平台,打造“SaaS+PaaS”协同研发、“产品+服务”双轮驱动的特色模式,深耕能源、化工、钢铁、机械、农产、橡胶、玻璃、建筑、园区等行业和场景。我们已在北京、天津、厦门和烟台设立子公司,客户分布于中国、美国、德国、韩国、新加坡等20多个国家和地区,包括多家世界“500强”企业。总之,我们还是家比较年轻的公司,取得了一些成绩,对工业互联网对发展有一些感受。
郭琦:工业物联网领域有什么独有的特点?
闫保磊:第一,工业互联网被国家定义为“新基建”之一,可见它的定位意义深远,对中国制造的转型升级是基础性的和关键性的,是未来的国之利器。既然工业互联网主要是服务工业的,那么可以说“工业为本,数科为器”,这里的“数科”是指以物联网、大数据为代表的数字科技,它作为一种新型工具为工业赋能,这才是工业互联网的底层逻辑。
第二,工业互联网是新兴技术,主要面向的是工业应用场景。当然,它还不完善。一是中国工业的特征是参差不齐,既有比肩工业40的先进制造业,也有停留在工业20甚至10的原始状态。这种工业发展的不平衡性决定了我国的工业互联网建设必然是艰难而漫长的。
第三,我们的愿景是打造工业数智化转型的底层 *** 作系统,也就是工业互联网平台。首先以提升我们自己开发解决方案效率为目的,未来也可以开放给软件开发企业甚至是客户,支持他们更便捷高效地开发工业场景的解决方案。但是,就目前而言,我们认为工业企业更迫切的需求是产品或者说解决方案,而不是平台。因此,我认为中国的工业互联网的建设应该是“先产品,后平台”,丰富的产品的共性部分逐渐沉淀下来,像沙漏一样堆积成跨行业跨领域的通用平台。
郭琦:边无际也是致力于要做物联网的底层系统,请边无际CEO陈永立来聊一聊,我们可以提供什么样的技术解决方案?
陈永立:边无际主要的产品是一套类似于IoT界的安卓的一套系统,我们认为安卓在移动时代它的核心是一个开发框架。因为有了安卓或者iOS这样的系统,可以让整个移动端的生态的开发门槛变得非常低,生态也可以爆发。在这个万物互联时代,我们认为以后包括工业互联网、工业物联网等,这一切的背后核心的解决方案的开发者都是程序员。我们需要给这些程序员一套好用的工具,也就是我们边无际所致力于打造的底层的基础设施。
郭琦:基础设施这两年是特别热门的一个词,由于我国发展到了一定的阶段,想要把基础设施的建设的会亮提上来,超过以前的纯粹代工的一个产业状态。想请闫总谈一下,在基础设施建设上我们遇到的难点主要是什么?
闫保磊:提到工业互联网平台,国内很多企业都在做这个领域的工作。既然是基础设施,其实它是一个从零到一的建构过程,大家的侧重点是不一样的。工业互联网分很多层次,不同企业定位的主要发力点是不一样的,我们更重要的关注点是在PaaS或SaaS层的开发工作。底层的一些基础设施是需要合作伙伴共同去构建的一个体系,由不同公司的基因和团队的核心竞争力决定。对于我们自己公司来讲,大量的客户都是直接面向工厂或工业园区的终端客户。做面向客户的整体方案过程中,我们是没有问题的,但是更底层的一些技术框架,怎样提升开发解决方案的效率,是需要边无际这样的团队或者企业来提供。在底层的构建上,尤其涉及到 *** 作系统的一些模块,是我们类似的企业共同需要的能力补充。还有一点,我多次强调的“工业为本”,工业机理是一个非常基础性的东西,缺乏对工业机理的深刻理解很难构建出满足工业需要的平台,这是很多人常常忽略的一点,甚至可以说是一个主要难点。只有将工业机理和数字科技深度融合起来,才可能打造出好的基础设施。
郭琦: PaaS业务和SaaS业务比较难做,原因是需要整合的领域、技术是比较多的。想请闫总谈谈我们在推进过程中需要哪些合作伙伴?
闫保磊:中国的工业门类齐全,行业众多,跨行业复制能力是一个稀缺能力。你在这个行业干得好,未必在其他行业也能干好。谁能解决跨行业复制问题,谁就是未来真正的王者。这与我们所使用的消费互联网显然是不同的。因此,有的企业就会专注做一个行业。作为平台型企业,就需要和不同行业的解决方案提供商合作。
工业的数智化转型是一个系统工程,绝非提供一个app就能解决的。比如会有大量的工业现场的工程问题,像安装传感器、调试通信等。这些专业型的工作同样需要合作伙伴一起参与。除此之外,还有云服务、数据分析以及基于数据分析的咨询等等。这些工作既可以一家公司都做了,也可以和其他企业合作。
还有一点我认为全世界还没有一个特别好的平台出现,类似于安卓、iOS或者Windows系统,工业界还没有公认的特别好的,这是一个重要的现状。构建底层都 *** 作系统是一个漫长的过程,当然也很困难,需要有一批这个领域的企业加强合作共建。
郭琦:工业物联网是两种体系的匹配,工业指向了客户需求到底在哪,工具是技术的解决方案,只有联合起来才能共同推动生态的建立。想请问一下陈永立,我们是一个技术导向开始发起创业的公司,你是怎么判断工业物联网的时代从此开始有了我们的机会呢?
陈永立:这个话题可能更偏技术一点。我们观察到由于容器以及云原生的技术日渐成熟,有机会做一个能够把非常碎片化、非常零散的物联网底层,用软件的方式统一化一套底层的技术。
我们这个团队有微软、亚马逊等的做云计算的基因,在这方面有一些比较深刻的理解,做出了一套底层的开发框架。如果我们只有一套开发框架,比如iOS、安卓、包括Windows,其实没有给客户带来直接的价值。Windows一开始之所以有价值,是因为它上面有Office,iOS和安卓之所以有价值,可能因为有微信、今日头条等真正的应用,所以是平台中还有平台的机会,我感觉是一个非常大的浪潮,而且是可能持续几十年的事。
郭琦:任何技术只有真正到了能用、能有人的感受、能够 *** 控,才可能产生价值和意义。想请问闫总,您是怎么判断工业物联网真的到来了,我们现在要走出去第一步的话,那个最痛的痛点在哪?
闫保磊:判断浪潮的到来,一是行业研究报告或者知名企业的战略转型计划。二是靠团队的集体智慧和判断。我和我的团队成员很多在工业领域工作十年以上,近距离观察和亲身参与了工业数字化项目的策划和落地。总之,我们主要是基于工业发展规律和多年经验作出判断,并制定公司发展战略。
从全球的趋势来讲,大家都处于差不多的阶段,就是从自动化向数字化和智能化方向转型,我们经常到工厂现场,有切身体会。2019年我们做了产品开发和验证,并在全球20多个国家做了落地案例,基本上判断工业40的浪潮确实不仅是某一个国家的事情,应该是全球同步要做的事,尤其是以中国、美国、日本、欧盟等工业基础比较好的国家和地区。
我们现在要走出第一步最痛的点应该是利用好技术为工业解决实际问题,而不是一些空泛的概念。工业企业是理性的,不能带来实际价值的东西是不可持续的。
郭琦:凯文很长一段时间在麦肯锡工作,对工业物联网领域有很深的观察,凯文是怎么判断现在这个行业是什么阶段,发展的怎么样?
郑凯文:从全球范围来看,我们可以坚信40一定会发生,而且是下一波能够引领不只是制造业,我觉得是全球多个行业、多个产业变革的一个核心。根据过往有限的咨询项目经验来看,国内总体的数字化或自动化的程度还是有些参差不齐的,而且越往前走越接近40这个目标的企业就更少,我觉得是时间的问题。
因为本质上过往的10年或15年,我们还是一个劳动密集型的生产型的国家。随着人工成本的增加,对于精密制造、科技型产业制造的需求不断扩大,所以自动化、数字化可能是唯一的途径。可能头部的一些企业在这方面已经做了一些投资,包括一些尝试,腰部或者尾部的企业,现在更多的可能还是跟随的状态。如果让我来说一个形状的话,我觉得还是一个三角形,很不幸是个正三角形。如果有一天我们能变成一个倒三角,大部分头部企业都已经做到数字化的时候,这可能是我们真正把这个产业做到比较先进、比较辉煌的时候。
郭琦:工业物联网刚刚起步,甚至在全球范围内都是刚刚起步,包括我们国家这次真正地和全球化并行同步起来,然后能达到从小部分人的尝试,变成更大部分人的头部企业都实现的自动化的程度。永立是从美国微软回来,之前面对的技术、产品、生态都是全球化程度最高的。你观察到的在全球范围内工业物联网领域,技术是如何协同起来的,它的先进技术到底是什么?
陈永立:我在微软的时候经历过一次特别大的战略转型,从“mobile first, cloud first”(移动为先,云为先),转变为“intelligent cloud and intelligent edge”(智能云和智能边缘),去掉了“移动”增加了“边缘”。“边缘”代表的是“边缘计算”(edge computing),我认为它的底层核心就是物联网,物联网价值最高的场景就是工业物联网,微软这种巨头公司也已经把整个战略重心向这边倾斜,与之而来的是有一套跟边缘计算有关的技术。
实际上,在云上面的技术很多时候并不适合在现场使用。举个简单的例子,我们需要有低延迟支持工业现场做实时决策。如果我们用云,数据要先传到云上,经过计算再回到本地,可能是几百毫秒的延迟。但如果我们在工业现场立刻用边缘计算进行处理,可能会降低到几毫秒,对于网络延迟方面的一个指标上就有百倍的提升。有很多的底层的基础设施以后,上层的应用就有了可能性。比如我们在一个工厂里有一个本地的小型数据中心,可以支持工业40的所有实施决策,无人工厂运行的所有计算是在本地进行,本地处理保护了数据的安全性,解决了客户的顾虑,尤其是工业客户要求在本地部署的情况很多。
郭琦:边缘计算是现在越来越热门的部署技术方案,请永立深入讲解一下,面对开发者用他们理解的语言解释,边无际怎样实现边缘计算的功能?
陈永立:边无际的核心产品是Shifu,是把物联网的设备封装成微服务,并把它的核心能力以API的形式开放出来。在做开发的时候不需要对接零散的生态,已经做好了一套数据底座,需要什么设备的能力可以直接调用。
郭琦:基于边无际的解决方案,联合零碳数科的能力,我们想做的PaaS平台、SaaS平台是想让软件工程师们改变制造业,提高制造业的智能工厂的效率。零碳数科探索得更加深入,闫总可以举例讲一下在发展用户的过程中,用户真实遇到的情况是什么,可能遇到哪些场景,哪些场景有特别的困难需要我们攻克?
闫保磊:工业互联网的应用参差不齐,确实是中国工业的现状。个人觉得目前我们的几个产品或者说解决方案,对应着工业互联网可以率先应用的场景。能源和碳的管理是我们特别重要的一个产品模块,目的是怎样更好地用数字技术帮助企业节能减排。工厂的节能技改、节能减排其实已经做了很多年,但现在大家会觉得再推进下去难度非常大。我们认为主要原因是,比较容易做的事情凭借老师傅、老工人的经验,基本上已经解决,如果缺乏数据支撑再去做深度挖掘,是很难做到的。
在工业场景中的数据,可能没有,或者数据的维度、颗粒度和质量都非常差,不足以支撑做深度分析,那么工业互联网技术就可以发挥作用。就像病人去医院首先要做全面体检,拿到各种参数,在工厂场景当中,我们要获取数据需要与设备去对接。工业场景的设备种类成千上万,只靠一个个接入可以获取数据,但是从底层来讲,我们希望市场上有一种能力把连接设备的效率提高,成为一个标准化模块,我觉得这是一个难点。
能源和碳管理可以扩展来看,像设备运维、生产制造、仓储物流等,我们对接的传感器或边缘侧的设备种类繁多,并且工业领域的协议也是比较复杂的,降低了解决方案的开发速度,这个事情值得我们认真研究。希望边无际能够做得更完善,对于我们这样的企业来讲,也会有很大的助力。
郭琦:如果工业互联网继续向前进,技术上得到了一些解决和积累之后,工业物联网会呈现出什么样的场景,我们想追求的是实现什么样的功能,实现什么样的工业物联网?
郑凯文:我们现在谈的工业物联网向前发展的本质是绩效,就是提高效率。提升效率的障碍主要是数据跟数据之间的壁垒没有被打通。举个简单例子,一家公司从产品定义到后期的采购、供应链、生产、销售、维保等整个周期内,最基本的一点数据能够让各个部门打通。现在很多公司没有这个基础,并不是企业老板不想做,而是市场的确有很多阻碍。
设备在设计的时候,它的自动化水平或者是数字化能力是不一致的,没有很规范的行业标准,可能从不同的供应商拿到解决方案拼凑出一套数据,中间会有漏包、无法及时沟通等情况。现在第一是数据的利用率不高,第二是拿到数据之后,怎么样分析数据提升现有效率,很多企业能在一部分的环节当中做到,但我觉得整个产业链全盘优化的话,计算量很大,而且对企业内部数据分析的能力要求很高。我们传统制造业以前是不太注重这部分的,更多是靠经验,靠商业模式去完善所谓的效率。我觉得向前发展的话,数字化的基础可能会是提高效率的一个最核心的起点。
郭琦:从数据收集工作到处理工作没做好的话,通过数据去指导生产,指导项目的效率肯定是会出现问题的。事实上,互联网是在近两年才重新注重大数据和人工智能的结合,用数据去指导生产生活,可能下一步真正进入到生产制造的领域当中。我们是有客户的,客户的需求往往也比较明确,在一些方面我们可以提供支撑。在闫总的设想中,零碳数科的商业模式是什么,未来会发展成什么样子?
闫保磊:一个公司的未来取决于团队的基因,基因决定了核心竞争力。我们团队的核心成员在工业场景的解决方案和经验方面是丰富的,对工业机理的理解是深刻的。同时,数字科技领域有来自微软等知名企业的专家。这种团队配置也呼应了“工业为本,数科为器”的判断。目前我们做的工作主要围绕工业客户,未来希望开发出更多数智化解决方案。
现在我们有几十个细分的解决方案,相比于未来市场上可能有百万级别的解决方案显得还很少。我们希望能够开发出擅长领域的解决方案,打造出一个应用商店,让我们的客户能够在里面挑选适合的产品和解决方案,可以满足工业企业不同行业、不同场景、不同阶段的需求。现在的工作是从客户比较急迫的、能够带来现实价值的场景切入,主要围绕能源和碳,以及供应链、智能制造、设备运维。我们不会进入营销、销售等领域,这些基本上用不到物联网。
怎样支撑未来百万级的场景解决方案的开发,怎样连接五花八门的设备获取高质量的数据,是全球通用的一个难题,对中国参差不齐的工业来说更是巨大挑战。如果没有这样技术的支撑,开发解决方案的效率会非常低。我们决心不断丰富产品矩阵,能够让客户找到适配需求的解决方案,这是我们商业模式的远景,也是我们正在做的工作。
郭琦:目前在做基础设施,未来可以模块化处理,让客户能通过拖拉拽的形式实现生产场景的解决方案的获得。请永立讲一下我们的商业模式是什么,现在对商业模式的思考是什么?
陈永立:我们未来想作为一个比较通用的物联网底层的开发工具或框架,给物联网的开发进行赋能。传统的Web开发或 移动开发 已经有很多可行的商业模式,比如美国的GitLab是给传统的开发者做一站式的解决方案,以SaaS加PaaS的形式进行收费。开发者工具的公司都很流行用一种增长模式PLG(Product Led Growth),先让大家免费使用社区版或基础版高效地获取产品的价值,同时可以提升日常工作的效率。如果有安全或稳定性等额外需求,会有企业版的增值服务。最终想做成什么样子,如果是以C端大家可以感知到的可能是类似于Windows、iOS或安卓,更确切一些可能更像AWS或阿里云,大家可以用已有的云服务、基础设施直接进行开发。
郭琦:如果给中国的工业物联网一个期待的话,你们希望它会是什么样子的?
闫保磊:我对这个行业和技术充满期待。首先,工业互联网作为新基建之一是中国制造业能够做大做强的核心竞争力的来源。其次,中国的工业互联网必须符合国情。中国的工业基础跟全球其他国家,尤其是西方国家的制造业有比较大的差异。怎样更好地服务国内的工业客户是首个应当回答的问题。希望中国的工业互联网企业在吸收全球的经验、理念的前提下,联系中国工业实际,打造有中国特色的工业互联网平台。
再次,希望中国的技术能够走向其他国家。2019年,我们做了大量的海外项目。我认为中国的技术走向全球的可能性是存在的,中国的技术在国外的市场空间是非常大的。我希望工业互联网技术在中国发展壮大之后,能够走向其他国家。
最后,工业互联网不是一个技术,而是一个复杂的系统,它涉及的技术非常多。我们在应用这个技术的过程中,融合了工业技术、人工智能、数字孪生等其他数字技术,包括机器人、无人机技术也已被融合在解决方案当中。仅靠几家企业是不行的。我希望相关企业更好地协同,加强互动和交流,共同构建工业互联网生态。
郭琦:大家都希望新基建成为强基建,让生态真正做起来,让中国的人才聚拢起来为工业物联网的这一次迈进做贡献。做企业要呼应国家战略让国内市场和国际市场双市场双循环,既服务于国内,发展大客户,也服务于国际,不卑不亢地走向全球市场。请陈永立来讲一下期待是什么?
陈永立:我的期待就是中国制造变成中国创造。
就像零碳数科已经在做的一样,已经在把中国创造出来的技术输出服务给国外企业,甚至一些发达国家的企业。我们做为中国人,尤其是技术驱动的公司,一定要树立好自己的自信心,我们绝对不会做的比别人差。我回国创业的一个很大的原因是制造业的基本盘是在中国,场景也是最多的,我们用最多最杂、甚至最复杂的场景,理论上可以打磨出最好的产品,然后出口给全世界。
我觉得中国的以制造业为基本盘的所有技术方案都有这个机会,可能在下一次的工业浪潮中,在中国会出现自己的类似于西门子,或者工业版的微软、亚马逊、谷歌等这样的公司。
随着云计算、大数据、物联网、5G、边缘计算等IT技术的快速发展,支撑了工业互联网的应用快速落地。作为“新基建”的重点方向之一,工业互联网发展已经进入快轨道,将加速“中国制造”向“中国智造”转型,并推动实体经济高质量发展。
新型 IT 技术与传统工业 OT 技术深度融合,使得工业系统逐步走向互联、开放,也加剧了工业制造面临的安全风险,带来更加艰巨的安全挑战。CNCERT 发布的《2019 年我国互联网网络安全态势综述》指出,我国大型工业互联网平台平均攻击次数达 90 次/日。
工业互联网连接了大量工业控制系统和设备,汇聚海量工业数据,构建了工业互联网应用生态、与工业生产和企业经营密切相关。一旦遭入侵或攻击,将可能造成工业生产停滞,波及范围不仅是单个企业,更可延伸至整个产业生态,对国民经济造成重创,影响 社会 稳定,甚至对国家安全构成威胁。
近期便有重大工业安全事件发生,造成恶劣影响,5 月 7 日,美国最大燃油运输管道商 Colonial Pipeline 公司遭受勒索软件攻击,5500 英里输油管被迫停运,美国东海岸燃油供应因此受到严重影响,美国首次因网络攻击而宣布进入国家紧急状态。
以下根据防护对象不同,分别从网络接入、工业控制、工业数据、应用访问四个层面来分析 5G 与工业互联网融合面临的安全威胁。
01
网络接入安全
5G 开启了万物互联时代,5G 与工业互联网的融合使得海量工业终端接入成为可能,如数控机床、工业机器人、AGV 等这些高价值关键生产设备,这些关键终端设备如果本身存在漏洞、缺陷、后门等安全问题,一旦暴露在相对开放的 5G 网络中,会带来攻击风险点的增加。
02
工业控制安全
传统工业网络较为封闭,缺乏整体安全理念及全局安全管理防护体系,如各类工业控制协议、控制平台及软件本身设计架构缺乏完整的安全验证手段,如数据完整性、身份校验等安全设计,授权与访问控制不严格,身份验证不充分,而各类创新型工业应用软件所面临的病毒、木马、漏洞等安全问题使原来相对封闭的工业网络暴露在互联网上,增大了工控协议和工业 IT 系统被攻击利用的风险。
03
数据传输及调用安全
云计算、虚拟化技术等新兴IT技术在工业互联网的大规模应用,在促进关键工业设备使用效率、提升整体制造流程智能化、透明化的同时,打破原有封闭自治的工业网络环境,使得安全边界更加模糊甚至弱化,各种外来应用数据流量及对工厂内部数据资源的访问调用缺乏足够透明性及相应监管措施,同时各种开放的 API 接口、多应用的的接入,使得传统封闭的制造业内部生产管理数据、生产 *** 作数据等,变得开放流动,与及工厂外部各类应用及数据源产生大师交互、流动和共享,使得行业数据安全传输与存储的风险大大增加。
04
访问安全
工业互联网核心的各类创新型场景化应用,带来了更多的参与对象基础网络、OT 网络、生产设备、应用、系统等,通过与 5G 网络的深度融合,带来了更加高效的网络服务能力,收益于愈发灵活的接入方式,但也带来的新的风险和挑战,应用访问安全问题日益突出。
针对上面工业互联网遇到的安全问题,青云 科技 旗下的 Evervite Networks 光格网络面向工业互联网行业,提出了工业互联网 SD-NaaS(software definition network & security as a service 软件定义网络与安全即服务)解决方案,依托统一身份安全认证与访问控制、东西向流量、南北向流量统一零信任网络安全模型架构设计。工业互联网平台可以借助 SD-NaaS 构建动态虚拟边界,不再对外直接暴露应用,为工业互联网提供接入终端/网络的实时认证及访问动态授权,有效管控内外部用户、终端设备、工厂工业主机、边缘计算网关、应用系统等访问主体对工业互联网平台的访问行为,从而全面提高工业互联网的安全防护能力。帮助企业利用零信任网络安全防护架构建设工业互联网安全体系,让 5G、边缘计算、物联网等能力更好的服务于工业互联网的发展。
基于光格网络 SD-NaaS 架构的工业互联网安全体系大体可以分四个层面:
基于统一身份认证的网络安全接入
首先 SD-NaaS 平台引入零信任安全理念,对接入工业互联网的各类用户及工控终端,启用全新的身份验证管理模式,提供全面的认证服务、动态业务授权和集中的策略管理能力,SD-NaaS 持续收集接入终端日志信息,结合身份库、权限数据库、大数据分析,身份画像等对终端进行持续信任评估,并基于身份、权限、信任等级、安全策略等进行网络访问动态授权,有力的保障了 5G+ 工业互联网场景下的终端接入的安全。
最小权限,动态授权的工业安全控制
其次针对工业互联网时代下的工控网络面临的安全隐患,SD-NaaS 零信任网络平台提出全新的控制权限分配机制, 基于“最小化权限,动态授权”原则,控制权限判定不再基于简单的静态规则(IP 黑白名单,静态权限策略等),而是基于工控管理员、工程师和 *** 作员等不同身份及信任等级,控制服务器、现场控制设备和测量仪表等不同终端的安全策略,不同工控指令权限,结合大数据安全分析进行动态评估及授权,实现工业边界最小授权,精细化的访问控制。以此避免工业控制网络受到未知漏洞威胁,同时还可以有效的阻止 *** 作人员异常 *** 作带来的危害。
端到端加密,精细化授权的数据防护
工业生产中会产生海量的工业数据包括研发设计、开发测试、系统设备资产信息、控制信息、工况状态、工艺参数等,平台各应用间有大量的数据共享与协同处理需求,SD-NaaS 平台提供更强壮的端到端数据安全保护方法,通过实时信任检测、动态评估访问行为安全等级,建立安全加密隧道以保障数据在应用间流动过程的安全可靠。同时生产质量控制系统、成本自动核算系统、生产进度可视系统等各类工业系统之间的 API 交互,数据库调用等行为,SD-NaaS 平台可实现细颗粒度的 *** 作权限控制,对所有的增删改查等动作进行行为审计。
采用应用隐藏和代理访问的应用防护
最后 SD-NaaS 平台采用 SDP 安全网关和 MSG 微分段技术实现工业互联网平台的应用隐身和安全访问代理,有效管理工业互联网平台的网络边界及暴露面,并基于工程师、 *** 作员、采购、销售、供应链等不同身份进行最细颗粒度的动态授权(如生产数据,库存信息,进销存管理等),对所有的访问行为进行审计,构建全方位全天候的应用安全防护屏障。
基于光格网络 SD-NaaS 解决方案,我们在工业视觉、智能巡检、远程驾驶、AI 视频监控等场景实现安全可靠落地;帮助企业在确保安全的基础上,打造支撑制造资源泛在连接、d性供给、高效配置的工业云平台,利用工业互联网平台 探索 工业制造业数字化、智能化转型发展新模式和新业态。
SD-NaaS 最佳实践:
申请使用光格网络产品解决方案
点击申请使用光格网络产品解决方案
目前,很多公司正在积极布局智能制造和工业物联网发展战略。问题是,这些企业是会共同推进两个战略的发展还是分开推进呢?我相信他们会共同推进,但我也可以理解那些把他们看作是分开的人。在我们讨论这个话题之前,先让我先定义一下术语,因为有很多关于这个的争论。
智能制造:在工厂和整个价值链内实现业务、物理和数字流程的智能化、实时协调和优化。基于所有可用的信息,资源和流程将实现自动化、集成化、被监控和持续评估。(根据MESA International ,MES国际联合会定义)
IIoT:在工业(如组件、产品、产品运输和设备)中使用的物理对象(“物”)中嵌入电子、软件、传感器组成的网络,这个网络能够使物理对象通过互联网协议(IP)收集数据并与控制系统、业务流程和分析交换数据。(根据维基百科“IoT”修改)
现在回到我们的核心问题:两个战略是要共同推进还是分开推进呢?很明显,目前还没有定论。下面是这些观点的一些背景:
工业互联网协会(IIC)说:"通过自动化工业设备和系统之间的通信,IIoT提高了整个工厂的效率,使其更加智能化,"我同意。我相信,IIoT是智能制造的一项有利技术,它的进步将推动智能制造的发展。同样,随着智能制造超越概念,进入公司正在执行的项目,制造商和他们的解决方案提供者将改进支持这些项目的IIoT技术。这两个很可能会被共同推进。
另外:并不是每个人都同意。在最近的MESA调查中,超过三分之一的制造商报告说他们不相信智能制造包括IIoT(参见上图)。我明白这个观点,因为智能制造有很多途径。实际上,IIoT可以在一些可能定义智能制造的正常边界之外使用。
与智能制造相比,IIoT确实发展可能会更快,因为解决整个价值链上的项目是一个超出公司内部的挑战。像通用动力公司、通用磨坊和通用汽车这样的大公司可以展示他们的力量,并帮助推动特定行业的智能制造行动,但是IIoT项目可以取得很大的进展,并在公司的内部提供许多好处。如果消费者市场上的物联网计划提高了工厂内部的期望门槛,那么实现类似的互联互通、数据访问、控制和分析能力也会有压力。
此外,生产仍将涉及人员,以及未配备IIoT的设备和产品。对于一些智能制造方案,IIoT没有也不可能是商业案例,这些情景可能关注人员和价值链流程。
推动第四次工业革命的是什么?
有些人会认为智能制造或IIoT可能导致第四次工业革命。我也有一个观点:智能制造是这场革命的基础,而IIoT不是。即使IIoT的发展比智能制造快得多,我也不认为它足以让生产企业进入下一个生产力阶段。
那么IIoT缺少了什么来推动第四次工业革命呢?首先是企业环境。智能制造不仅整合了工厂或智能连接工厂,还包括智能连接的供应链和贯穿产品生命周期的数字线程。与其他工业革命一样,技术的转变--比如IIoT--必须与新的流程和人们工作的方式协同工作,以达到我们在第四次工业革命中所追求的生产力水平的提高。
IIoT是一项基础技术,但它只做它所做的事情--在"事物"之间创建通信,以便更容易地获取数据和分析。第四次工业革命需要许多其他技术和工艺。其中一些将针对一件设备或生产过程;其他人将在工厂、企业或价值网络上工作。
真正让商界人士兴奋的是,当新技术和新方法将它们整合在一起时,就会扰乱市场,并让公司提供新的服务和与新产品所能产生的数字数据绑定的新价值。例如,基于IoT的智能产品可以向工程师和生产者提供关于产品如何在该领域执行的反馈。基于这些数据,我们能提供什么样的新见解和服务?
这就是为什么我认为,要实现第四次工业革命需要更多的时间。它将把IoT和IIoT引入智能制造策略,以创建新的方法来协调和优化整个价值链中的流程,并向客户交付新的服务级别。
钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。
智能制造引领新一轮制造业革命,也是一场具有划时代意义的深刻的工业革命。《中国制造2025》明确坚持创新驱动、智能转型、强化基础、绿色发展,加快我国从制造大国向制造强国转变。推进钢铁行业智能制造是时代发展的必然趋势,也是我国实现钢铁强国的必由之路。
时下,我国钢铁行业正在全面贯彻实施《钢铁工业调整升级规划(2016-2020年)》(以下简称《规划》)。“十三五”期间,我国钢铁工业将进入以结构调整、转型升级为主的发展阶段,也是钢铁工业结构性改革的关键阶段。钢铁行业要积极适应、把握、引领经济发展新常态,落实供给侧结构性改革,以全面提高钢铁工业综合竞争力为目标,以化解过剩产能为主攻方向,坚持结构调整、创新驱动、绿色发展、质量为先、开放发展,加快实现调整升级,提高我国钢铁工业发展质量和效益。
要实现钢铁工业“十三五”规划的目标,钢铁企业必须全面推进智能制造,而《规划》为我国钢铁行业如何推进智能制造指明了方向,确定了目标,指出了路径。
钢企智能制造探索步伐加快
如今,不少钢铁企业已经在智能制造上开拓探索和实践,取得了较好的成效。宝武集团、沙钢等大型钢企采用工业机器人、无人行车、无人台车、无人仓库等智能制造技术来提高劳动效率,降低生产成本,在钢铁生产自动化、库存、营销等关键环节智能化水平先进。
一些大型钢厂将智能制造分成“3+1”模式,即“智能装备、智能工厂、智能互联和基础设施”,进行探索和实施。据介绍,目前,该领域研发的课题主要是钢铁制造全流程在线检测—监测技术及数字化、智能化嵌入技术,分布与集成相结合的余热余能梯级利用和系统回收技术,钢铁生产智能化能源管控与环境优化技术,污染物分布与集中结合的协同控制与一体化脱除技术,钢厂与相关产业互补链接及与周边社会共生共荣生态链接技术,钢铁流程制造和服务一体化网络集成技术,钢铁制造流程物质流、能量流、信息流协同动态调控技术,高性能钢铁产品定制化、减量化生产及装备技术,高性能钢铁产品全生命周期智能化设计、制备加工技术。
从目前来看,不少钢企纷纷进入智能制造领域:
有的钢厂借助“互联网+”、物联网和智能制造技术,依托传感器、工业软件、网络通信系统、新型人机交互方式,实现人、设备、产品等制造要素和资源的相互识别、实时联通,促进钢铁研发、生产、管理、服务与互联网紧密结合,推动钢铁生产方式的定制化、柔性化、绿色化、网络化、智能化。
有些技术、资金实力雄厚的钢铁企业,则以钢铁流程绿色化、智能化集成为目标,重点围绕制造流程结构优化、制造流程技术提升、钢铁制造服务平台建立、新型商业模式建立与运营四大关键路径进行研发。
有的钢厂以关键环节机器换人为抓手,尝试和实践全工序机器换人,提升智能化生产水平,先后建成5000毫米宽厚板和特棒示范智能车间,形成了独具特色的智能制造发展之路。
有的钢厂明确智能制造目标,稳步推进:减少人工作业,提升自动化能力;全面推进建立区域化、工序化的信息监控、管控平台;制订公司智能化制造规划,并成立智能制造推进项目团队,以实现从机械化、自动化、信息化到智能化的逐步转变。
有的钢企确定了智能制造目标,即在未来几年内建设、改造一批智能化产线,完成基于互联网来满足用户个性化需求的智能化研发、生产、销售体系构建,促进企业实现向智能制造模式的转型。
钢企推进智能制造该如何着力?
一家钢企从事自动化生产工作的负责人坦言:“我们公司不是不想尝试智能制造,而是不知道该怎么着手。”
曾有一家大型钢铁企业工程师也向笔者表示,目前,国内钢铁智能化仍处于初级阶段,在实际生产过程中还是以经验为主导,尽管个别生产线有自己的数据库,但一般为生产工艺的数据,在上下游衔接等方面没有形成一个统一的系统。
那么,钢铁行业该如何加快推进智能制造?在一系列钢铁产业发展的高峰论坛上,业内专家就我国钢铁业推进智能制造发表了各自的见解,给钢铁企业诸多的思考和启迪。
业内专家指出,钢铁行业在积极化解过剩产能的基础上加快推进钢铁行业转型升级,当前的重点就是加快智能制造发展,即借助智能制造技术,转变生产管理模式,实现敏捷制造和精细化管理,进而推动钢铁行业的转型升级。智能制造是制造业未来发展的重大趋势,也是当前钢铁行业转型升级、提质增效的重要着力点。早在2015年工信部发布的《2015年智能制造试点示范专项行动实施方案》,决定自2015年启动实施智能制造试点示范专项行动,以促进工业转型升级,加快制造强国建设进程。其中,钢铁行业已被列入工信部的智能制造试点范围。
专家同时强调,推进钢铁行业智能制造是一个庞大的系统工程,涉及资金、技术、人力等诸多方面,系统策划是确保目标一步一步实现的有效方法,不能急功近利、一哄而上,而要稳扎稳打、分步实施、循序渐进,即针对我国钢铁行业和智能制造的特点,逐步推进制造过程智能化。诸如,在重点领域试点建设智能工厂或数字化车间,加快人机智能交互、工业机器人、智能物流管理等技术和装备在生产过程中的应用,促进钢铁制造工艺的仿真优化、数字化控制、状态信息实时监测和自适应控制等的发展。同时,在此基础上全面实施高级计划排程(APS)系统,实现敏捷制造和精准交货。
专家表示,在推进企业决策智能化方面,目前主要以两化深度融合为载体。钢铁智能制造的核心是对信息资源的有效开发和高效利用,目标是提高资源的全局利用效率,其重点在于决策的智能化。为提高资源和能源利用效率,钢铁企业应采用系统优化的思想,建立具有冶炼技术和经济成本的双重模型,实现单部门局部优化与多部门一体化全局优化的平衡。
大数据是传统数据库、数据仓库、商业智能概念外延的扩展和手段。推进大数据的集成应用,关键在于健全钢铁行业信息化基础设施,整合冶金数据资源,突破钢铁行业大数据核心技术,提升钢铁大数据分析应用能力,提高数据安全保障能力,培养复合型大数据人才,组织实施制造业大数据创新应用试点,以推动制造模式变革和冶金行业的转型升级,培育发展冶金产业新业态。
以上由物联传媒转载,如有侵权联系删除
生产管理上的颠覆!!
哐哐智造(kitweecom)是一款基于物联网技术的云MES生产管理平台。
工业物联网是指将“物联网”的概念与工业相结合,物联网是基于互联网延伸而来,简单来说物联网就是物物相连的互联网。传统机器是死物,数据之间无法互联互通,物联网技术就是打破机器与人之间的隔阂,随时随地管理工厂。
MES是企业生产执行系统,通过物联网的技术将生产设备数字化,再通过云端大数据分析将人-机-企业管理联系起来的系统。
哐哐智造MES系统利用物联网的技术,硬件加软件的方法实现了数据的自动收集与上传,用户可以随时通过手机查看物料消耗、产能以及设备的相关数据,出差也可以通过哐哐云眼监控厂房,加上设备的报警提醒功能,真正实现了生产过程的可视化、实时化和智能化,通过移动监控真正解决用户生产管理难的问题。
原标题:2019年中国物联网行业市场分析:规模化应用时,融合各行各业推动智能化转型物联网融合各行各业推动智能化转型
物联网作为全新的连接方式,近年来呈现突飞猛进的发展态势。全国人大代表、小米集团董事长兼CEO雷军表示,在中国,物联网的大规模应用与新一轮科技与产业变革融合发展,预计2022年,中国物联网行业市场规模将超过724万亿元。他表示,各行各业的智能化转型如火如荼,物联网作为连接人、机器和设备的关键支撑技术,应加快推动布局,抓智能化转型机遇。
工业物联:助制造业实现“智能+”
政府工作报告指出,要打造工业互联网平台,拓展“智能+”,为制造业转型升级赋能。在雷军看来,推动工业物联网的应用,是实现制造业“智能+”的必要途径。
他表示,随着数字经济新引擎5G技术的布局,将能满足机器类通信、大规模通信、关键性任务通信对网络速率、稳定性和时延的高要求,因此物联网应用场景十分广泛,尤其与车联网、无人驾驶、超高清视频、智能家居等产业深度融合,进一步应用到制造业、农业、医疗、安全等领域,为各行各业带来新的增长机遇。
据前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2015年全球物联网设备数量仅仅38亿台。截止至2018年底全球联网设备数量已经超过170亿,扣除智能手机、平板电脑、笔记本电脑或固定电话等连接之外,物联网设备数量达到70亿台。预测2019年全球物联网设备数量将达83亿台。并预测在2025年全球物联网设备数量将突破200亿台。
全球物联网市场的支出预计将在2017年增长37%,至1510亿美元。由于物联网的市场加速,这些估计数已向上修正。2017年全球物联网市场规模达到1100亿美元,截止至2018年末全球物联网市场规模增长至1510亿美元,并预测在2025年全球物联网市场规模将达15670亿美元。
2015-2025年全球物联网设备数量统计情况及预测
数据来源:前瞻产业研究院整理
2017-2025年全球物联网市场规模统计情况及预测(单位:十亿美元)
数据来源:公开资料、前瞻产业研究院整理
雷军表示,目前全球制造业竞争推动工厂向智能化转型,物联网作为连接人、机器和设备的关键支撑技术受到企业的高度关注。即将布局的5G技术优势,将能够较好满足工业控制需求,同时为制造企业提供远程控制和数据流量管理工具,以便更高效智能地管理大量的设备,并通过无线网络对这些设备进行软件更新。
雷军建议,我国应加大对高端装备、智能制造、工业物联网等重点领域的财税金融支持力度,引导中央、地方产业投资基金和社会资本,围绕大型制造企业上下游进行垂直改造,加强自动化产线、无人工厂等重大技术研发和成果转化,打造虚拟的产业闭环,提高产业的生产效率和整体国际竞争力。
农业物联万物生长数字化:物联网+农业会迎来怎样的“春天”
雷军表示,乡村振兴战略是以发展和创新的眼光推进现代农业建设。实施乡村振兴战略,就是推进农业农村的现代化,以创新驱动乡村振兴发展。
他认为,随着物联网在农业领域的应用越来越广泛,5G技术的应用将为建设智慧农业、数字乡村奠定坚实科技基础,带动农业实现发展变革。
什么是智慧农业呢
按照业界的说法,智慧农业以智慧生产为核心,智慧产业链为其提供信息化服务支撑。目前我国智慧农业有四大应用场景:数据平台服务、无人机植保、农机自动驾驶以及精细化养殖。
雷军建议,国家有关部门应制定出台5G农业应用补贴和优惠政策,并鼓励社会资本、运营商、互联网企业等共同参与,因地制宜规划打造智慧农业示范区、试验区,并在经验成熟后进行全国推广,全面提升农业领域的高新科技应用程度。
例如在养殖业,通过无线传感器网络技术,进行基本信息管理、疾病档案管理、防疫管理、营养繁殖管理,发展智慧养殖,实现数字化养殖。
在植保方面,借助物联网技术自动探测和记录区域内的微气候、墒情等环境信息,并结合植物保护专家系统来精确地预测病虫害的发生,从而通过无人机喷洒农药,精准高效解决农业生产的植保问题。
交通物联:无人驾驶或将最早“引爆”
“在5G众多的应用场景中,无人驾驶和车联网被认为是最有可能出现的引爆点。”雷军表示,智慧交通对通信网络有着极高的要求,而大带宽、低时延、海量的连接数量、严密的覆盖,这些都是5G技术的核心优势。
在雷军看来,智慧交通最可能爆发,一方面因无人驾驶具有巨大的节能潜力,在减少交通事故、改善拥堵、提高道路及车辆利用率等方面意义深远,并可直接带动智能汽车后市场等产业的快速发展。
另一方面,全球车联网产业进入快速发展阶段,信息化、智能化引领,全球车联网服务需求逐渐加大。基于5G技术的应用,智能交通领域将快速进入发展上行区间。
了解到,在重庆,长安、小康、力帆等汽车企业,均与百度的智能驾驶Apollo开放平台展开合作,包括自动驾驶全技术链流程、功能安全及信息安全、车联网、云服务等领域。
雷军建议,国家应研究、制定和出台关于智能交通的中长期发展目标,制定相应的法律法规和行业标准支持产业发展。尤其针对无人驾驶汽车的安全责任问题、技术试验问题、车联网的国家标准规范、智能芯片应用等产业发展关键点进行前置研判,通过鼓励性政策支持交通运输领域智能、安全、可控发展。
医疗物联:智能化就诊为“健康中国”加速
“物联网技术在医疗行业也有很广泛的应用空间。”雷军说,服务患者方面,可以采用LBS技术实现智能导诊,优化就诊流程,还可以借助可穿戴传感器和服务解决方案进行远程护理。
在保障设备质量方面,可以采用各类专用传感器,跟踪设备使用情况,借助预测性维护来修复关键医疗设备存在的潜在问题,完善设备运维体系。
环境监测方面,可以通过传感器对ICU室、手术室等特殊地点进行环境监测和预警。同时,基于医疗护理全流程的健康大数据,在安全保护前提下的数据标准细化、完善,以及数据网络的综合利用也显得尤为迫切。
在业界看来,在推进智慧医疗体系建设的大背景下,有多个方面的需要关注。比如,互联网医疗相关服务体系,包括发展互联网医疗、互联网+公共卫生服务、互联网+家庭医生签约等;另外还有医疗行业数据安全和服务质量安全。
雷军表示,要推动医疗实现智慧化,国家有关部门应逐步推动新技术在医疗卫生领域的应用,加快完善医疗物联网和健康大数据相关标准,制定医疗智能可穿戴设备及配套信息平台行业标准。
同时,出台针对物联网企业在医疗领域投入科学研究、应用开发的鼓励政策,使云计算、人工智能、虚拟现实/增强现实、物联网、区块链等技术在医疗卫生行业更好地集成创新和融合应用,满足人民日益增长的健康医疗新需求。
提高创新能力大力发展商业航天产业
关注物联网发展的同时,雷军今年参会还重点关注了在2018年热火朝天的商业航天的发展。
在雷军看来,航天是当今世界最具挑战性和广泛带动性的高科技领域之一,为服务国家发展大局和增进人类福祉作出了重要贡献。
近年,在运载、卫星和空间应用等领域,涌现出太空探索公司(SpaceX)、蓝色起源(BlueOrigin)、一网(OneWeb)等大批商业航天公司,被认为是最为活跃的创业领域之一。
雷军说,商业航天行业规模未来预计可达数万亿美元,将迎来空前的发展机遇,可重复使用火箭、巨型商业星座、商业载人空间站等航天计划,正在逐渐成真,彰显出商业航天推进技术进步和产业发展的巨大力量。
雷军建议,首先,我国应加快推动航天立法,确保民营企业长期稳定、合理有效利用空间资源的权利。建立商业航天市场准入退出、公平竞争、保险和赔偿、安全监管等机制,构建较为完善的商业航天法律体系。
雷军表示,商业航天属于快速发展的新兴行业,门槛高、投资大、战略意义显著,比多数产业更容易受到政府监管和行业政策的影响。
雷军建议,可由政府统筹,国企、民企多方聚力,布局商业航天产品智能制造,鼓励民企参与航天装备制造相关的国家重点项目,加速颠覆性航天技术创新与应用。
同时,制定商业航天装备产品量产及上下游企业的培育政策及实施细则,加大航天智能制造技术共享和转化力度,开放国家航天制造基础设施,颁布航天试验设施共享目录、有偿使用收费标准等。
在此基础上,雷军建议,应完善落实政府采购商业航天产品与服务机制,开放商业航天公司的行业准入,拓展商业服务与应用领域。
例如,可以简化商业火箭发射、航天测控、无线电频率等审批程序,引导鼓励民营企业战略性空间资源布局,承担轨道环境有序可控的应尽责任;可以进一步开放已有发射场,新增发射工位,满足高频次商业发射服务需求等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)