ECC 认为云边协同包含云端与边端基础设施,即:服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)的多种协同。
事实上,不仅是物联网场景,在云计算开源产业联盟发布的白皮书中,深入分析了云计算与边缘计算协同的九大应用场景及其价值:
场景1:CDN结合边缘计算向下一代内容分发平台升级CDN结合边缘计算,将vCDN(virtual Content Delivery Network,虚拟内容分发网络)下沉到运营商的边缘数据中心,从而降低响应时延,可提升QoS指标,同时提高用户体验,降低眩晕感和延迟卡顿。
场景2:新时代的万亿云游戏市场“快速切换,点开即玩”。新时代的云游戏利用云边协同快速扩张,游戏研发、硬件设备商、通信设备商、游戏平台将基于自身现有优势从不同角度切入,实现万亿云游戏市场的突破。
场景3:云边协同是工业互联网的重要支柱在工业互联网场景中,边缘设备只能处理局部数据,无法形成全局认知,在实际应用中仍然需要借助云计算平台来实现信息的融合。因此,云边协同正逐渐成为支撑工业互联网发展的重要支柱。
场景4:传统能源产业的智慧升级能源产业在传统模式下,需要大量的人力定期对数据进行收集和处理,一来人工成本非常高,二来数据分析效率低、时延大。因此,云边协同正为传统能源产业的智慧升级提供道路。
场景5:加速数字中国在农业领域落地云边协同将推动农业供给端的变革,农业由经验主导向数据主导转变,通过智能化手段,可以将人的经验传递给机器,通过数据挖掘,可以发现新的生产规律和农业商品优化的新空间。
场景6:家庭智能化信息服务成为可能云边协同使电器控制、安全保护、视频监控、定时控制、环境检测、场景控制、可视对讲等家庭智能化功能得以实现,同时使政务、医疗、教育等产业进一步丰富家庭智能化信息服务成为可能。
场景7:智慧交通借助云边协同向车路协同方向发展车路协同是智慧交通的重要发展方向之一,能力构建涉及车内边缘计算、道路边缘计算、车路协同云等方面,云边协同可以从多方面提供车车、车路动态实时信息交互,并开展车辆主动安全控制和道路协同管理。
场景8:云边协同引领安防智能化技术潮流现代安防监控可以和人工智能相结合,面向智能安防、视频监控、人脸识别等业务场景,以低时延、大带宽、快速响应等特性实现本地分析、快速处理、实时响应。
场景9:云边协同重新定义医疗保健医疗保健是药师直接且负责任地提供的与药物治疗相关的服务,其目的是达到改善病人生命质量的确切效果,云边协同则从实时本地数据分析、数据断点续传、数据安全传输等方面让医生我患者提供更快、更高的护理。通俗讲解边缘计算
随着物联网越来越火,同时伴随着物联网而来的,就是各种概念和各种技术,其中一个就是边缘计算,当然还有雾计算。其实边缘计算和雾计算都差不多,雾计算只是和云计算是相对的。只是叫边缘计算呢,比较高大上吧。
下面我们要通俗地讲一讲边缘计算。
为什么要通俗的讲呢,怕如果不通俗,你听不明白。新的东西在出来的时候,往往是需要一个接纳和理解的过程。就像以前互联网刚出来的时候,很多人都不知道互联网,于是就得慢慢科普,让大家慢慢接受和理解呀。谁现在还解释什么是互联网呀。
而边缘计算也有一段时间了,只是随着物联网的发展,边缘计算的概念也开始流行起来。我们先看一段非通俗的介绍边缘计算的概念:
边缘计算,是一种分散式运算的架构。在这种架构下,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。
或者说,边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。
边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。
以上是我从网络文章摘抄的一段对于边缘计算的解释。整个解释基本都是专业术语,搞工控的你,看完这段话,你来告诉我什么是边缘计算。
作为一名参与研发产品边缘计算的程序员,我决定写一篇文章来通俗讲解一下这个边缘计算。
首先,我要举一个不太恰当的例子。
比如有一款APP,用户在使用这款APP的时候,就会收集用户的信息,比如收集这个用户的年龄,性别,手机号,地址位置,搜索记录等等信息,而收集这些信息主要是更好地分析这个用户的行为和感兴趣的东西,比如车,房子,书,美食等什么感兴趣。然后更为准确地为其投放内容及广告。
这个是很常见的一个功能,但是就是这样一个功能,怎么和边缘计算挂钩呢。
在边缘计算之前,就是云计算了。
如果是使用云计算,这款APP的行为是这样的:
APP收集到信息后,把所有的基本信息,上传到服务器中,然后由服务器来执行算法,计算和识别出用户的兴趣爱好,甚至可能推算出这个用户的消费能力。然后服务器就可以根据这个推算出来的结果,为用户投放其感兴趣的内容和广告。
如果是使用边缘计算,这款APP的行为就是这样:
APP收集了信息后,不上传到服务器中。然后由APP自己计算和识别出这个用户的兴趣和爱好,也可以推算出这个用户的消费能力,也就是服务器的计算功能,直接由APP来完成。然后服务器只需要问一下APP,哪个用户是有可能是年薪百万的,哪个用户是单身的。APP只需要告诉服务器说,这个一路向东用户很帅,而且还单身,喜欢旅游,写诗,可以为其投放相亲美女内容。
就这样,整个过程并没有服务器参与计算,服务器也没有参与收集信息。因为这个信息在APP本身收集和计算,并没有进行上传,所以也没有涉及信息收集。
而,这就是边缘计算。
也就是以前由服务器作计算的部分,现在改由信息采集的设备直接计算了,再把计算的结果,直接输出到服务器中。服务器只要结果,并不需要过程的数据。
下面我们就以回答问题的形式来通俗的聊一聊这个边缘计算吧。
所以,什么是边缘计算呢。
边缘计算,说白了,就是(服务器)云计算懒得算了,就这点数据,你在数据采集的时候,顺便自己算得了,什么都丢到服务器来算,很累的。于是,边缘计算就这么来了。
那么,工控领域行业中使用到边缘计算的都有哪呢
这个就太多了。随着很多PLC,控制器和触摸屏等都开始接入到物联网中,每个设备需要采集的信息不一样,有温度,湿度,产量,生产数据,运行状态等。而不同行业的参数指标,性能数据都不一样,这很难在服务器通过云计算来形成一套标准,这使得PLC,控制器等,都会用到边缘计算。
为什么以前的DTU,或者物联模块等不流行边缘计算,现在开始流行了呢。
因为现在的IoT使用的模块或者芯片的处理能力也越来越高,资源也比较丰富,随着一些芯片成本的下降,以及开发模式的简化,使得一些芯片或模块在处理基本的数据采集功能后,仍存在资源过剩及功能利用率低的情况,也就是一个100%的芯片或模块,你只使用了10%的来采集数据,那还有90%你可以用来作计算
那么,使用边缘计算的优势在哪里呢。
1 可以使得设备的支持数量提升几个数量级。
比如一个服务器有10000点血。而接入一个设备,就要消耗1点血,如果再对这个设备进行数据分析,需要消耗9点血。也就是接入并计算一个设备就需要10点血。那么这个服务器最多只能接入1000个设备就挂了。
如果服务器只负责接入设备,不进行计算和分析,那么接入一个设备,消耗1点血,由设备自己进行数据计算和分析,再输出结果。这时候服务器就可以接入10000个设备了。
没有使用边缘计算,服务器可以接1000个设备。
如果使用了边缘计算,服务器可以接10000个设备。提升了一个数量级。而对于一些复杂的设备,特别是一些工厂,现场作业等需要数据量多的,如果使用了边缘计算来给服务器节省空间和资源,这个优势更能体现出来了。
2 让计算变得更为灵活和可控
前面说到,接入设备的服务器很难做到统一的计算分析标准,因为物联网可是一个万物接入的网络,每一个设备采集的数据不一样。如果使用了边缘计算,就可以单独针对每一个设备进行相应的计算和分析。当然,如果相同的设备或者相同参数的,可以进行复制使用同一套计算标准或算法。如果将计算脚本开放出来给用户,用户就可以自定义去添加自己的计算公式和行为。
边缘计算的模式和拓扑结构是什么样的呢。
比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。
数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。
在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。
比如数据采集模块需要采集一个电表,电表能采集的数据有电流,电压,偏偏没有功率。当然现在的电表采集不到功率很少了,只是举例。
那怎么办呢,偏偏客户很想看到功率。那在没有边缘计算的时候,为了要看到功率,只好在云服务里,增加一定的计算规则,将采集到的电流和电压通过计算得到功率。如果有1000个电表,云服务器就要对这1000个电表进行计算。这就增加了云服务器的工作量和负担了。
如果有了边缘计算,那么在数据采集模块,就可以添加计算功能,直接将采集的电流和电压通过计算得到功率,只需要把功率上传给服务器就可以了。这样,即便有50000个电表,云服务也毫无计算压力,因为它并不需要计算。
这就是通俗的讲一讲边缘计算。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)