我觉得二者相辅相成,但物联网可能更适应社会发展需求。原因如下
人工智能类似软件,需要物联网作为载体,物联网类似个硬件,是需要人工智能来驱动的。人工智能需要落地的应用作为载体,物联网就是一个最重要的载体。
物联网的英文是Internet of things简称IOT,翻译过来就是,,物物相连,万物互联,简单来说,即是物与物相连互联的互联网,但其实,物联网在我们的生活中已经无处不在,从我们在上学期间使用的校园一卡通,到高速上的ETC,再到近些年流行的智能手环可穿戴设备等等,都是物联网运用的例子,另外,随着AI技术的发展,物联网+AI带来了更多的可能性。
传统家居产品的智能化就是一个很好的例子,互联网时代,我们使用手机等设备获取输出信息,d属于人机交互模型,是以人为主体在网络上传输数据和信息,物联网主要分为3个组成部分,网络连接(connectivity)、数据处理,(device)、网络连接,传感器被安装在各种产品中,它们就是万物互联的物,这些传感器或者是芯片,让产品拥有感知能力和数据处理能力。
同时物联网感知设备每天可以收集产生大量的数据,如何利用这些数据并且分析数据,就成为难题,随着人工智能的发展,一些人工智能的分析方法就可以引入进来,人工智能为物联网面临的数据难题提供了最好的解决方案,人工智能通过强大的数据分析能力,在人类的帮助下做出最佳的决策,人工智能与物联网相融合,利用人工智能实时分析数据的物联网设备终端正在走入我们的千家万户。
最简单的设备例子:语音音箱和手机端语音助手,就是建立在自然语音处理的技术之上的物联网终端设备,物联网家庭摄像头也极大的依赖计算机视觉技术实施监控功能。这些物联网设备也只有借助人工智能技术的加持才能真正的发挥其优越性。物联网和人工智能 的关系就是一种相辅相成,携手并进,互相依赖的关系。
但人工智能的周期发展还是很长的,而目前很多大学把人工智能的核心的内容在研究生阶段培养,本科阶段用来测验学生是否有学习的潜力和能力。同时人工智能专业对教学设备和教学师资有过高的要求,而人工智能行业但凡有独特认知和能力的人才基本上在大型企业,没有在学校。人工智能对学历要求比较高。
物联网工程的市场庞大,因此就业前景也非常好。毕业生可从事信息传播时代内容方面的深度、综合、跨学科的信息传播工作,同时也能在新闻传播技术方面从事设计、制作等方面的传播技术类工作或者在政府管理部门、科学研究机构、设计院、咨询公司、建筑工程公司、物业及能源管理、建筑节能设备及产品制造生产企业等单位从事建筑节能的研究、设计、施工、运行、监测与管理工作等等。
1、市场规模:中国人工智能行业呈现高速增长态势
人工智能产业是智能产业发展的核心,是其他智能科技产品发展的基础,近年来,中国人工智能产业在政策与技术双重驱动下呈现高速增长态势。根据中国信通院数研中心测算,2020年中国人工智能产业规模为3031亿元人民币,同比增长151%。中国人工智能产业规模增速超过全球。
注:中国信通院的市场规模根据IDC数据测算,统计口径与IDC一致,即包括软件、硬件与服务市场。
2、竞争格局:中国人工智能企业主要分布在应用层 占比超过80%
——中国人工智能企业全产业链布局完善
我国作为全球人工智能领域发展较好的地区,无论是人工智能领域的基础层、技术层、应用层,还是人工智能的硬件产品、软件产品及服务,我国企业都有涉及。在国内,除去讯飞等垂直类企业,真正在人工智能有所长进的巨头依然是百度、阿里、腾讯这三家。
——中国人工智能企业主要分布在应用层,占比超过80%
据中国新一代人工智能发展战略研究院2021年5月发布的《中国新一代人工智能科技产业发展报告(2021)》数据,截至2020年底,中国人工智能企业布局侧重在应用层和技术层。其中,应用层人工智能企业数占比最高,达到8405%;其次是技术层企业数,占比为1365%;基础层企业数占比最低,为230%。应用层企业占比高说明中国的人工智能科技产业发展主要以应用需求为牵引。
3、技术分布:中国人工智能企业核心布局的技术主要为大数据和云计算
从人工智能企业核心技术分布看,大数据和云计算占比最高,达到4113%;其次是硬件、机器学习和推荐、服务机器人,占比分别为764%、681%、564%;紧随其后,物联网、工业机器人、语音识别和自然语言处理、图形图像识别技术的占比依次为555%、547%、476%、472%。
4、细分领域:深度神经网络领域为中国AI研究热门
根据清华大学人工智能研究院、与中国工程院知识智能联合研究中心联合发布的《人工智能发展报告2011-2020》,2011-2020年十大AI研究热点分别为深度神经网络、特征抽取、图像分类、目标检测、语义分割、表示学习、生成对抗网络、语义网络、协同过滤和机器翻译。
—— 更多行业相关数据请参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)