随着互联网的快速发展,物联网也在阔步前行,与此同时,物联网对人们的影响也越来越大。如今,诸多IT公司都大量投资物联网,以此将人与设备、设备与设备以及系统与系统连接起来。据市场研究机构IDC的研究人员估算,到2020年时,物与物联网的规模将是比人与人联网的规模高26倍。
如今,从人们与周围事物互动的角度来看,物联网已经在影响人们的日常工作。预计将来物联网还将发挥全新的作用,并将改变人们的交通、交流和协作的方式。为什么呢?以下10大原因将对此问题作出更好的解释。
1、让人们路途中的交通更加快捷
人们约有15%的交流时间花费在路上,约有17%的燃料消耗在等待红灯的过程中。道路上的传感器、交通视频摄像头以及道路的中央分隔带都将影响着汽车与驾驶员的“谈话”方式。通过监控行驶速度、交通信号灯、事故以及当前的路况等信息,编入程序的汽车,甚至是道路都将给驾驶员的移动设备发去最有效的行驶路线,从而减少交通时间,节省燃料,并让人们出行更安全。
2、预测产品的稳定性
在产品出货之后,买方与卖方之间的互动往往就会减少,如果双方没有新的交易或产品出现问题,那么买方与卖方之间的交流也几乎没有。预测技术能够监控产品的“稳定性”,从而在问题出现之前就能够及时地发现问题。在倡导消费者为先的时代,一家公司如果掌握了预测产品性能的监控技术,那将意味着这家公司将能够让消费者感到满意,并避免问题的出现。
3、创建更多的工作职位
数字朝代已经开创了IT工作职位的新时代。随着物联网的兴起,云和大数据相关的工作也越来越专业化。市场研究机构Gartner去年就发布报告称,首席数码官(CDO)的数量正在不断上升。Gartner还预测称,到2015年时,约有25%的公司将设立这样的工作职位,以此来管理公司数字,在这样的形势之下,数据专家也将成为公司的重要资产。在获得了大数据和分析的价值之后,人们也将开始看到更多的首席数据科学家、分析师、甚至是客户满意官员等相关的工作职位,甚至还会出现我们目前还没有想到的职位。
4、提供工作能力
社交媒体的崛起已经为人们的交流和团队协作开创了新的时代。像Box、Skype、Jive和Facebook等有价值的社交工具已经吸引了下一代工人的关注。视频交流和图像交流等也将节省人们的交流时间,同时也让这些社交工具与现代化的协调工作系统不分上下。
5、便于将非结构化数据转化成结构化数据
大数据不仅仅是“大”,而是“巨大”。大数据如果被很好地利用的话,那么将会给商业创造更多的价值,特别是在非结构化数据转化成结构化数据之后。分析数据并将这些分析后的数据整合到有用的信息之后,这些数据将会提供消费者、产品行为、市场状况、员工生产力以及更多的相关有用信息。
6、更利于环境保护
如今,感应器已经在一些办公大楼和家庭内运行,但展望未来,这种感应器将成为现代建筑基础设施的必需品。随着用户在房间或卧室内的移动,安装后的动作感应器也将能够按照用户需求打开或关闭灯光设施、加热器、空调、咖啡机和电视机等设备。这些感应器如今已经整合到盲人设备之中,并利用温度和光线等决定打开和关闭相关设备的时长。最终,这种感应器很好地帮助人们节能,节省资金并保护了环境。
7、更好地定位
物联网让位置追踪服务更加简捷。目前,手机、汽车甚至是医院内的联网设备都能够被定位,从而节省有价值的资源。诸多公司将能够很快地追踪他们业务的每一个细节,包括从库存到订单履约情况等,并根据这些位置信息来部署现场服务和员工。工具、工厂和汽车都将能够连接基于位置技术的网络之中,从而让整个链条更加有效。
8、更加智能化的沟通与服务
即使是水冷却机也能够连接到物联网,从而更好地让人们利用更多的时间。例如,水冷却机(或咖啡机、快餐店等)都能够更加智能化的记忆用户的个人偏好,并根据声音和动作激活技术提供相应的服务,甚至是按照用户的需求传递饮料,而不需要用户等候。
9、改变医生工作方式
物联网正在改变医生的工作方式、病人的体验以及整个医患关系。如今,病人的病情必须经过医生当面确诊后才能作出评估。将来,物联网将能够让医生直接读到病人身体相关的数据信息,从而让医生远程实时的掌握病人的信息。
10、根据天气状况安排工作
如今,天气预报主要依赖一些卫星和地面天气监测的结果而进行。将来,大量的感应器将会整合到不同的设备之中,以及空中和地面的数据接受站。使用大数据分析来更好地预测地球状况,将有利于人们更加熟练准确的掌握天气状况和气候变化情况,这样将能够进行更加准确的天气预报,从而让人们更好的规划一周的工作。从全球范围来看,物联网将意味着人们能够更加准确地预测气候变化趋势和自然灾害情况。
我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面北京电脑培训就开始今天的主要内容吧。
技术
在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。
在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。
GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。
开源
tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>
Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。
AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。
硬件
FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)