物联网是一个非常先进的、综合性的和复杂的系统。其最终目标是为单个产品建立全球的、开放的标识标准,并实现基于全球网络连接的信息共享。物联网(Internet of Things)理念指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具有“内在智能”的设备如传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等,以及具有“外在使能”(Enabled)的物品如贴上RFID的各种资产(Assets)、携带无线终端的个人或车辆等“智能化物件或动物”、通过各种无线和/或有线的长距离和/或短距离通信网络实现互联互通(M2M)、应用大集成(Grand Integration)。
物联网功能在于,能基于云计算的SPI等营运模式,在内网(Intranet)、专网(Extranet/)或互联网(Internet)环境下,采用适当的信息安全保障机制,提供安全可控(隐私保护)乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、进程控制、远程维保、在线升级、统计报表、决策支持、领导桌面(Dashboard)等管理和服务功能,实现对“万物”(Things)的“高效、节能、安全、环保”的“管、控、营”一体化服务。
具体的来说,物联网的基本功能特征是提供“无处不在的连接和在线服务”(Ubiquitous Connectivity), 具备十大基本功能。
在线监测:这是物联网最基本的功能,物联网业务一般以集中监测为主、控制为辅。
定位追溯:一般基于GPS(或其他卫星定位,如北斗)和无线通信技术,或只依赖于无线通信技术的定位,如基于移动基站的定位、RTLS等。
报警联动:主要提供事件报警和提示,有时还会提供基于工作流或规则引擎(Rule“s Engine)的联动功能。
指挥调度:基于时间排程和事件响应规则的指挥、调度和派遣功能。
预案管理:基于预先设定的规章或法规对事物产生的事件进行处置。(证据采集)
安全隐私:由于物联网所有权属性和隐私保护的重要性,物联网系统必须提供相应的安全保障机制。
远程维保: 这是物联网技术能够提供或提升的服务,主要适用于企业产品售后联网服务。
在线升级:这是保证物联网系统本身能够正常运行的手段,也是企业产品售后自动服务的手段之一。
领导桌面: 主要指Dashboard或BI个性化门户,经过多层过滤提炼的实时资讯,可供主管负责人实现对全局的”一目了然“。
统计决策: 指的是基于对联网信息的数据挖掘和统计分析,提供决策支持和统计报表功能。
互联网,是指将两台计算机或者两台以上的计算机终端、客户端、服务端通过计算机信息技术手段互相联系起来的结果,解决人与人之间互联互通问题,人们可以在互联网上获取信息、发布评论、采购产品、购买服务等,但是这些信息和服务需要人来做大量的工作才能完成,并且难以动态地了解其变化。物联网(简称IoT,InternetofThings),其定义为通过各种信息传感设备,如射频识别技术、全球卫星定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要连接、监控、互动的物体或过程状态信息,包含其声、光、热、电、力学、化学、生物、位置等各种基础信息,通过互联网形成相互交互的、可识别的、可共享的网络,其目的是实现物与物、人与物在网络上的连接,识别、管理和控制等,物联网的信息是动态的,主要由物理机器生成。
互联网与物联网之间是有联系的。首先,物联网的通信渠道仍然是互联网,是在互联网基础上延伸和扩展到传感层的网络;第二,物联网用户可以通过互联网的通信渠道,端到端延伸和扩展到任何物与物之间,人与物之间。
工业互联网不能被简单的理解为工业领域的互联网,如果仅仅将工业和互联网这两个关键词拆分来理解,容易被理解成工业领域所用的互联网,这样理解仍然是互联网的概念。而工业物联网基本可以理解为工业领域的物联网。
SAP公司推动的是Industry 40 Now战略,SAP思爱普是德国“工业40”的核心发起单位之一,也是其中的唯一一家软件公司,是“工业40”技术标准的制定者之一。工业互联网又在中国支撑实体经济数字化、网络化、智能化转型等方面发挥重要作用。
工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。
所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)