2019年全球ICT产业关键字,聚焦「智慧、速度与创新」。创新技术如人工智慧、延展实境(XR)、区块链、数位分身(DigitalTwin)持续出笼,尤其人工智慧加速晶片及量子电脑的发展,伴随5G商转,势必带动产业跳跃式前进。既然聚焦「虚实整合、运算科技、人机互动」三大主轴,2019年COMPUTEX,全球IP矽智财授权领导厂Arm受邀出席《COMPUTEX论坛》、《InnoVEX论坛》主题演讲。Arm在COMPUTEX揭示全面运算(TotalCompute)主张,为5G时代提供更符合更多使用情境(usecase)的整体运算方案,并展现强大生态系能量。
Arm在COMPUTEX2019有哪些亮点展示?瘾科技带你浏览四大解决方案 亮点一:物联网平台回应Arm的目标在2035年打造达一兆台连网装置,为了让连网装置深度沟通,Arm针对IoT平台的生态系,近年接续推出「DesignStart」、「Pelion」及「Neoverse」等相关计画。今年COMPUTEX,Arm展示Pelion这项混合环境的端到端联网连接、装置和资料管理平台方案。Pelion特色在于建构3A情境,「任何装置、任何资料、任何云端」(Anvice,Anydata,Anycloud),管理任何种类的连网装置与连接,应付任何内外部不同类型的资料,连接任何公有、私有及混合云端。
换言之,Pelion平台让企业在安全环境下,管理各项物联网装置,无限制连结任何规模的资料。COMPUTEX也展示,Arm收购TreasureData后,借助巨量资料技术能力,Pelion平台对资料流程进行融合,让企业用户以高效、更安全的技术部署、连接和更新连网装置,顺利走入物联网的资料世界。
亮点二:AI机器学习联网装置与数据资料爆发成长,人工智慧的机器学习应用,逐渐从云端转移至终端。为了把机器学习技术放在边缘装置发挥所长,Arm针对机器学习的晶片应用进而打造全新处理器。延续Arm在CPU具备的可编程优势,以及GPU数据处理压缩能力和高吞吐量的设计特点,将其整合至机器学习晶片设计之中。针对机器学习热潮,Arm推出「ProjectTrillium」机器学习运算平台支持各种AI应用程序,在功能性与可扩展性方面,能实现更快机器学习效率。根据统计,目前ProjectTrillium平台的学习数据吞吐量,比起过去CPU、GPU协同作业的机器学习效率,已经达2~4倍以上,效能也优于传统DSP的可编程逻辑。
换言之,ProjectTrillium是一个异质的ML运算平台,平台架构包括ArmML处理器、开放原始码ArmNN软体框架,目前搭载于超过25亿台Android装置。Arm针对ML处理器进行强化,包括超过两倍能源效率,达到每瓦5兆次运算(TOPs/W)、记忆体压缩技术提升达三倍,以及提升至高达八核心的次世代峰值效能,与每秒最高32兆次运算(TOP/s)。
随着机器学习需求愈来愈高,开发人员更渴望利用系统上专属神经处理器(NPU)的优势。Arm机器学习ML处理器提供同级最优化的能耗效率,并有强大的软体生态系统支援,让整个生态系统的AI效能极大化。
▲Arm示范如何在装置上快速的执行机器学习功能,挑战人的记忆,和装置相比,看谁能先辨出不同的图像。
亮点三:AR/VR装置前几年开始流行的AR、VR装置,过去最大挑战来自虚拟视觉的稳定度。对此,Arm因应5G科技演进推出多款全新高阶IP套件,其中Mali-D77DPU显示器即是聚焦扩增实境、虚拟实境所需的内容所打造,让虚拟实境更加真实。Mali-D77是Mali-D71显示处理器更新版,最高可对应3K解析度与120fps更新率,虚拟视觉影像得以更稳定呈现。全新的硬体功能,加速头戴式显示器的虚拟实境运算,实现更小、更轻、更舒适的VR装置部署。
▲在COMPUTEX展示OculusQuest的VR头盔,提供高效能、无线,摆脱传统VR装置需要连接线的牵绊,创造VR装置新体验。
当然,使用者对AR、VR装置的期待除了影像稳定,在沉浸式体验方面,还包含更轻量、不受线材影响以及更顺畅的效能。Mali-D77其他功能表现在镜头失真校正(LensDistortionCorrection)、色差校正(ChromaticAberrationCorrection)、非同步时间扭曲(AsynchronousTimewarp),对应更清晰、更真实影像,还能降低配戴者头晕情况。除此之外,Mali-D77显示处理器IP,3K120虚拟实境效能,硬体节省VR作业负载4成以上系统频宽,以及12%功耗表现。Arm表示,为了让VR更为普及,在全球达到数十亿台装置的长期目标,Mali-D77解决现阶段显示技术的挑战,为VR产业迎向下一个新世代。
亮点四:车用Arm在今年COMPUTEX展示的第四个亮点,聚焦在汽车应用。Arm在车用方面扮演重要角色,因其牵涉稳定与安全,尤其ADAS与自动驾驶需要顾虑的层级更是重要。对此,Arm针对车载安全推出ArmSafetyReady计画,同时也包括针对自驾车的7nm制程最佳化处理器架构Cortex-A76AE,借由整合Split-Lock提供车载所需的安全性。
换言之,ArmSafetyready车用安全计画涵盖Arm既有、新型与未来的全方位车载计画,从系统性流程到研发,且通过ISO26262与IEC61508标准,一站式提供软体、元件、工具、认证及标准等资源,确保加入此计画的合作伙伴其SoC与系统,皆达到最高安全层级。
今年COMPUTEX也展示基于Arm的DMS(DriverMonitoringSystem)驾驶监控系统产品。DMS是采用ArmCortex-A7所支援的深度学习NN模型,由TEEAILab所开发。这套DMS系统展示在CortexA7上运行AI/ML以实现驱动程序状态监视功能。例如针对驾驶员闭眼、打哈欠侧视、俯视、打电话和吸烟等行为进行迅速检测,并发出音频以提醒驾驶。Arm在智慧驾驶领域,也展开AutomotiveEnhancedforFunctionalSafety计画,将推出首款多情绪执行处理器,以强化新世代安全驾驶体验。
▲COMPUTEX展会上也展示Arm在智慧驾驶领域的成果(图右),情绪执行处理器问世将有助驾驶安全。
聚焦未来世界,打造创新体验Arm在COMPUTEX2019展会中,展现新世代运算领域的创新技术与相关应用。除了上述相关亮点,也聚焦面向未来2030年的使用情境。Arm拥有全面软体开发框架,包含ArmIP、ArmNN、ArmComputeLibrary及ArmDevelopmentStudios,透过生态系统合作帮助开发人员更快采用、更快上市,透过机器学习软体优化,有效扩展硬体效能。
想像未来的世界,5G传输、机器学习、终端运算可能已经成为我们生活的日常,而产业之间将呈现万物联网的庞大生态系。对此,Arm将持续展现其领先技术优势,携手物联网超级战队掌握下一波科技浪潮。
8月8日,由物联网智库主办的首届“挚物·AIoT产业领袖峰会”于北京正式召开。本届峰会汇集近千名AIoT从业者和数十位行业知名专家、学者、大咖,邀请了中国工程院院士邬贺铨、中国信通院副院长余晓晖等业内专家,阿里巴巴、华为、新华三等国内物联网平台巨头,亚信集团、中移物联等通信界企业。另外会上,物联网智库推出了全新子品牌——“挚物”,并成立“挚物·AIoT产业研究院”。
本次峰会立足未来,以AIOT为主角,复盘AIoT落地成果和现状, 探索 AIoT未来赋能潜能。AIoT作为2019的开年热词,已然备受瞩目。 但是物联网依旧存在着发展成本过高、缺乏良性循环的商业模式等诸多问题。本次峰会专家、学者、行业践行者将会从智联网现状、解决路径以及模式 探索 等方面展开讨论。
自1999年物联网的概念被提出,直至2016年物联网才迎来爆发。据相关机构统计,2016年全球可连接设备数量增长31%,这意味着物联网设备中产生的数据量将会以指数级增长。随着5G、云计算、人工智能等新兴技术的推动,“智联网”概念应运而生。众所周知,智联网将会驱动传统产业进行数字化升级,但物联网还未正是兴起,智联网还要等多久?
中国工程院院士邬贺铨
2019年是智联网在各个工业领域进行试验落地的关键一年,智联网的呼声也愈来愈高。然而,智联网的应用落地还存在着很多阻碍。邬贺铨针对这一问题表达了他的观点:“未来AIoT的发展,仍然需要标准化推动,企业间合作提升兼容性,需要威胁情报共享,增强安全保障能力。”
智联网的发展前路漫漫,5G发展助推智联网向前发展。邬贺铨指出:“5G的增强移动带宽、高可靠、低时延和广覆盖与边缘计算结合,使得AI与物理网融为一体。”在智联网的发展历程中,5G网络可以新增eMTC和mMC的窄带物联网标准,使得大企业能够使用承载在公共通信网上的专用物联网。
企业专用物理网的发展,使得边缘计算成为当下最热门的技术之一。邬贺铨在演讲中讲到:“为适应工业传感器、视频业务、VR/AR与车联网及远程医疗等的低时延要求,需将这些业务的存储和内容分发下沉到边缘计算来处理。利用边缘计算可以过滤和压缩数据,节省核心网资源,成本仅为单独使用云计算的39%。”
5G、物联网、智联网均离不开边缘计算,由此可见边缘计算的市场前景广阔。据IDC预测,未来将有超过50%的数据在边缘侧处理,到2020年边缘计算的支出将占物联网基础设施总支出的18%。边缘计算无疑成为了物理网时代下的新宠。 但是,今年智联网的话题日嚣尘上,物联网和智联网发展却不及预期,究竟为何?
5G进入商用元年,AI得到长足的发展,物联网在数年的积累中正在迎来发展的“新拐点”,逐步迈向AIOT方向发展。AI能够帮助物联网提升价值,物联网想进入智联网新时代依然困难重重。华为物联网平台总经理王强表示:“当下,面向AIoT-ICT的基础设施供应商和各行业龙头正面临三大挑战,即联接挑战、行业数字化挑战和AI挑战。”
华为物联网平台总经理王强
为了解决三大挑战,华为采取逐个击破的方式,发挥5G、IOT、AI三大技术优势,从而驱动行业数字化变革,最终形成商业闭环。王强在演讲中讲到:“5G网络可以实现数据采集高并发上行,高可靠、低时延控制下行;物联网作为物理世界与数字世界的桥梁能够连接行业多维度数据;最终通过人工智能深入到各行各业进行形成商业价值闭环。”
找到解决路径,下一步需要做的便是做大联接,使能安全可信的万物互联。根据Gartner预测,未来5-10年物联网将会进入一个应用爆发期,边缘计算也将进一步渗透到各类定制硬件中。华为凭借自己在智能芯片、边缘计算、云服务的优势,致力于打造全栈、全场景的物联网服务。
在演讲中王强列举了华为在智能交通上的情况:“将交通与智联网相结合共同打造智慧交通就是要做到减事故,少拥堵。在高速公路场景中,华为可以做到10大事故场景预警;在城市交通场景,可以做到18个场景、路口等待时间降低177%。”
华为以行践言,目前,华为AIoT战略已经在城市、园区、交通、车联网、物流、电力等8大行业的200+个项目中进行了 探索 ,在三大场景(海量重复、专家经验、多域协同)将AIoT与行业智慧相结合,实现效率提升、专业传承和突破极限,致力于做行业智能化升级的新引擎,帮助万科、DHL、延崇高速、深圳交警、PSA、东风,国家电网等企业进行AIoT开发应用落地。
智联网能够促进智能系统相互连接,势必会助推着行业应用和技术产业化的快速崛起。在众多行业中,大家纷纷看好制造领域。阿里云智联网首席科学家丁险峰在“智联网驱动数字化变革”的主题演讲前便抛出这样一个问题:“你相信工业物联网的商业模式能够在未来创造万亿级的企业吗?”由此可见,寻找适合工业物联网的商业模式成为第一要务。
阿里云智联网首席科学家丁险峰
现如今,我国正处于从“制造大国”向“制造强国”、“中国制造”向“中国创造”转变的关键时期。但是,我国制造行业存在着高端装备水平较低,工业软件发展缓慢和创新动力不足的问题。对于制造业的企业来说,也在面临着生产成本不断上升,供应链协同低效的瓶颈。丁险峰表示:“基于这样的大背景。亟需加速数字化进程,推进智能制造落地速度,全面优化制造业。”
寻找合适的落地场景是每项新技术必须要经历的过程,智联网的最佳落地场景究竟在哪?亚信集团董事长田溯宁认为:“智联网会激发新场景的出现,在我们向往5G带来的万物互联的新世界的时候,不断 探索 业务模式最为重要。”
亚信集团董事长田溯宁
物联网的破局之路究竟在哪?解决传统行业成为最佳出路。镭场景实验室创始人暨CEO武军是致力于成为物联网场景的定义者和实践者,在其演讲中,提到了一个有趣的场景:“中国每年有8000万头仔猪在出生72小时内死亡,其中母猪误压致死是一个主要原因,人工解救措施将会变得越来越昂贵,物联网的接入有望解决8000万头仔猪。”
5G时代的来临,无疑将物联网推向了高潮。市场研究机构发布的数据显示,2019年全球AIOT市场规模为51亿美金,到2024年,这一数字将增长至162亿美元,复合年增长率为26%。面对智联网发展进程中的诸多挑战,促进数据与管理的融合将是面向挑战的关键。 未来,各项技术不断迭代升级,商业模式日渐成型,AIOT新时代便不会遥远。
2019年物联网已经开网,开网时间是2018年11月8日。《物联网系统》对应于信息化时代的到来,系统地阐述了物联网的由来及其发展。较详细地阐明了物联网软硬件系统,指出了亟待解决的问题及展望。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)