dbscan聚类算法原理

dbscan聚类算法原理,第1张

dbscan聚类算法原理如下:

只要任意两个样本点是密度直达或密度可达的关系,那么该两个样本点归为同一簇类,上图的样本点ABCE为同一簇类。因此,DBSCAN算法从数据集D中随机选择一个核心点作为“种子”,由该种子出发确定相应的聚类簇,当遍历完所有核心点时,算法结束。

DBSCAN是基于密度空间的聚类算法,在机器学习和数据挖掘领域有广泛的应用,其聚类原理通俗点讲是每个簇类的密度高于该簇类周围的密度,噪声的密度小于任一簇类的密度。

簇类ABC的密度大于周围的密度,噪声的密度低于任一簇类的密度,因此DBSCAN算法也能用于异常点检测。

DBSCAN中的几个定义:

Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域。

核心对象:如果给定对象Ε邻域内的样本点数大于等于MinPts,则称该对象为核心对象。

直接密度可达:对于样本集合D,如果样本点q在p的Ε邻域内,并且p为核心对象,那么对象q从对象p直接密度可达。

密度可达:对于样本集合D,给定一串样本点p1,p2…pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达。

密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联。

可以发现,密度可达是直接密度可达的传递闭包,并且这种关系是非对称的。密度相连是对称关系。DBSCAN目的是找到密度相连对象的最大集合。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10938245.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-12
下一篇 2023-05-12

发表评论

登录后才能评论

评论列表(0条)

保存