2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。
截至到2019年,我国物联网市场规模已发展到15万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
近年来,我国政府出台各类政策大力发展物联网行业,不少地方政府也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。
目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。
政策推动我国物联网高速发展
自2013年《物联网发展专项行动计划》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。
以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。
我国物联网行业呈高速增长状态 未来将有更广阔的空间
自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的15万亿元。
虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。
物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。
物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。
在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标16亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过27万亿元。
未来物联网行业将向着多元方向发展
标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux *** 作系统。
合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的事件频发,特别是Facebook的丑闻引发了全球担忧。
因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。
安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。
多重技术推动物联网技术创新
从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;
区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。
—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》
现在的世界,已经进入了一个概念满天飞的年代。和工业大数据相关的概念非常多,包括工业40、物联网、云计算、人工智能、智能制造等等,接下来,我会 追根溯源 ,把这些概念都理清楚,这样,我们才能更好地理解工业大数据。今天先聊一聊工业40是怎么回事。
工业40的概念来源比较清晰,不像大数据概念的来源,说不清,道不明。工业40是德国联邦教研部与联邦经济技术部在2013年 汉诺威工业博览会 上提出的概念。它实际上是德国人为了推广他们的工业技术而提出的一个营销概念。这个概念应该说提的非常成功,仿佛一夜之间,全世界都在讲自己的产品符合工业40的理念。
当时德国人提的工业40概念中,主要是描绘了制造业的未来愿景(注意,是制造业,而不是工业,德国人在这里其实偷换了概念,工业的范畴远比制造业大得多),提出了继蒸汽机、规模化生产、电子信息技术等三次工业革命后,人类即将迎来的以生产高度数字化、网络化、机器自组织为标志的第四次工业革命。
在德国人描述的四次工业革命中,第一次是以蒸汽机为动力的机械生产设备导致的第一次工业革命,该次工业革命与18世纪末基本结束。第二次是基于劳动力分工(即流水线),以电为动力的大规模生产为核心的第二次工业革命,该次革命始于20世纪初, 第三次工业革命 始于20世纪70年代,其标志是电子信息技术的大规模使用使得工业自动化程度大为提高,现在,德国人认为我们进入了第四次工业革命,在本次工业革命中,软件不再仅仅是为了控制仪器或者执行具体的工作而编写的,也不再仅仅被嵌入到产品和生产系统中。产品和服务借助于互联网和其他网络服务,通过软件、电子及环境的结合,生产处全新的产品和服务。越来越多的产品功能无需 *** 作人员介入,而是可以自主进行生产。
从这个概念可以看出,工业40实际上是德国等先进制造业发达国家在进行一次大的制造业升级,以期保持其在国际竞争中的地位。因此,工业40概念提出之后,各国纷纷跟进,美国提出了工业物联网,中国提出了工业2025,其实都是想在这一次工业革命中保持或者进一步占领国际市场,获得竞争优势。
工业40中涉及到的技术概念有很多,大致可以通过下面这张图来进行描述。
从底层看,工业40包括互联网时代的三大底层基础设施,工业物联网(这是美国人的概念)、云计算、工业大数据,在具体应用上,包括两大硬件技术3D打印和工业机器人,两大软件技术工业网络和工作自动化,同时还囊括了未来的两大技术虚拟现实和人工智能。这些技术构成了工业40的技术图谱。
由此可以看出,工业大数据是工业40的一部分,它是为工业40提供软件技术支撑的,也是工业40的核心部分。由于工业40的最终目的是提高企业的生产力、生产效率及生产的灵活性,但又受制于生产的复杂性和复杂生产带来的超高难度的管理,因此,现代化的生产要求从产品、工具、运输、设备的每一个环节都配备传感器,并更够通过标准协议彼此通讯,在这种情况下,企业生产就必须依赖全新的软件系统,它可以覆盖整个产品生命周期,它可以协调海量的数据流程,它可以自主控制设备进行复杂化的、自定义的生产作业,而这和核心的一切,就是工业大数据。
到今天,工业大数据的概念已将慢慢的超越了工业40,工业大数据既是工业40的核心,也在独立的发展,既有重合的部分,也有超越的部分。
不管概念如何发展,以人工智能、大数据为标志的第四次工业革命已经在我们的身边展开了,通过这一次的工业革命,我们可以进行超级复杂流程的管理、大规模生产过程的优化和决策的快速执行,实现复杂生产和个性商业活动的高度整合,使人类的生产效率再上升一个数量级,使生产力得到进一步的释放。
行业主要上市公司:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)等
本文核心数据:物联网产业规模、竞争格局、发展前景预测等
产业概况
1、定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
2、产业链剖析:共有四大层面
所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。
从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。
自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。
行业发展历程:处于市场验证期
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等
信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发展历史悠久,可分为三个阶段:
行业政策背景:政策大力推进
根据最新发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,在“十四五”期间,明确新基建,还要让5G用户普及率提高到56%。并且5次提到关于物联网的规划发展,除了划定数字经济的7大重点产业外,其余4次提到的场合均体现出对物联网发展重点的表述。
十四五规划中划定了7大数字经济重点产业,包括云计算、大数据、物联网、工业互联网、区块链、人工智能、虚拟现实和增强现实,这7大产业也将承担起数字经济核心产业增加值占GDP超过10%目标的重任。
产业发展现状
1、中国物联网连接数快速增长
全球物联网仍保持高速增长。物联网领域仍具备巨大的发展空间,根据GSMA发布的《The mobile economy
2020(2020年移动经济)》报告显示,2019年全球物联网总连接数达到120亿,预计到2025年,全球物联网总连接数规模将达到246亿,年复合增长率高达13%。我国物联网连接数全球占比高达30%,2019年我国的物联网连接数363亿。而根据2021年9月世界物联网大会上的数据,2020年末,我国物联网的数量已经达到453亿个,预计2025年能够超过80亿个。
2、应用层与平台层价值最高
从产业链价值分布看,应用层和平台层贡献最大的附加值,分别占到35%左右,传输连接层虽然重要,但产值规模较小;底层的感知层元器件由于种类众多,产业价值也较大,占到20%左右。
3、物联网应用者使用情况调研
微软发布的第三版《IoT Singal(物联网信号)》报告显示,2021年物联网的应用持续保持增长。91%的受访组织是物联网应用者。
物联网项目可分为四个阶段:学习、试验/概念验证、购买和使用。2021年,29%的物联网项目处于学习阶段;处于试验/概念验证阶段的项目比例仍保持不变,2020年和2021年均为25%;处于购买阶段的项目比例增加了1%,从2020年的21%增加到2021年的22%;处于使用阶段的项目在2020年和2021年保持稳定,均为25%。
4、中国物联网市场规模突破25万亿
目前,物联网已较为成熟地运用于安防监控、智能交通、智能电网、智能物流等。近几年来,在各地政府的大力推广扶持下,物联网产业逐步壮大。再加之近几年厂商对物联网这一概念的普及,民众对物联网的认知程度不断提高,使得我国物联网市场规模整体呈快速上升的趋势。2019年我国物联网市场规模约在176万亿元左右,2020年根据赛迪公布的数据,我国物联网市场规模约达到214万亿元左右。初步统计,2021年市场规模为263万亿元。预计未来三年,中国物联网市场规模仍将保持18%以上的增长速度。中国物联网市场投资前景巨大,发展迅速,在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。
更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
如何实现智能制造是大家都关心的问题。从哈佛商学院的迈克尔·波特到宾夕法尼亚大学沃顿商学院,有一个普遍的共识,即数字化转型是智能制造实现的途径。重要的是,这个共识也来自于众多的世界级制造业企业与企业家们。
这一共识是基于无数技术趋势的融合,例如,物联网、赛博系统(CPS)、工业物联网、移动技术、人工智能、云计算、虚拟/虚拟增强现实(VR/AR),以及大数据分析等。我们一定要保持清醒,不要简单地认为有了这些技术,未来五年就是制造业的黄金时期。道理很简单,这个新制造业文化的变革进程是相当复杂和艰难的,没有行业、企业与用户的融合推进,无法实现这次变革。数字化转型不仅仅意味着企业简单的数字化,而是把数字作为智能制造的核心驱动力,利用数据去整合产业链和价值链。
自工业革命以来,为了改进运营,制造商一直以来都在有意地采集并存储数据。随着时间的推移,数据在制造业分析的需求将越来越大。然而在过去的许多年间,利用数据的根本动因并没有改变,数据的复杂性增强,数据转化为情报的能力越来越大。
2012年高德纳给出大数据定义,其中特别强调大数据是多样化信息资产,不仅关注实际数据,更关注大数据处理方法。数据量大小本身并不是判断大数据价值的核心指标,而数据的实时性和多元性对大数据的定义和价值更具直接的影响。
在讨论工业大数据分析的时候,我注意到两种不同的观点:
第一种观点认为,制造业向来都有大数据。几十年来我们的企业一直在通过历史记录、MES、ERP、EAM等各种应用系统采集数据。在部分产业链环节,特别在市场营销方面,大数据算是一个新的热词。
第二种观点认为,从工业大数据角度看,制造业是一个尚未打开的市场或刚刚开启的市场。存在大量不同类型的数据,但如今它们还未被应用到分析之中。
考虑到这些观点,面对任何新的市场提法,包括名词解释、定义或分析框架,我们始终都应该保持适当的怀疑精神。这里我更多倾向于第二个观点。我们的制造业的确有“大量数据”,但这并不是我们大多数人从市场上所理解的“大数据”涵义。在搞清楚工业大数据分析之前,我们应该如何定义制造业的大数据?这里可以通过大数据的三个特性,进一步了解大数据的特性。
数据来源
工业大数据的主要来源有两个,第一是智能设备。普适计算有很大的空间,现代工人可以带一个普适感应器等设备来参加生产和管理。所以工业数据源是280亿左右大量设备之间的关联,这个是我们未来需要去采集的数据源之一。
第二个数据来源于人类轨迹产生的数据,包括在现代工业制造链中,从采购、生产、物流与销售内部流程以及外部互联网信息等。通过行为轨迹数据与设备数据的结合,大数据可以帮助我们实现对客户的分析和挖掘,它的应用场景包括了实时核心交易、服务、后台服务等。
数据关系
数据必须要放到相应的环境中分析,才能了解数据之间的关系。譬如,每一款新机型在交付给航空公司之前都会接受一系列残酷的飞行测试。极端天气测试就是测试之一。该测试的目的是为了确保飞机的发动机、材料和控制系统能在极端天气条件下正常运行。
问题的处理关键在于找到可能产生问题的根源,消除已知错误,并确保解决方案的可靠有效。一旦找到并确定了根本原因,同时具备了可接受的应急措施,就可把问题当成一个已知错误来处理。问题调查的过程一定需要收集所有可用、与事件相关的信息,以确定并消除引起事件和问题的根本原因。数据采集与分析必须要事件/问题发生的环境数据结合。
数据价值
对于数字化转型,大数据不仅要关注实际数据量的多少,最重要的是关注大数据的处理方法在特定场合的应用,让数据产生巨大的创新价值。如果离开了收益考虑或投资回报(ROI)的设计,一味寻求大数据,则大数据分析既无法落地也无法为企业创造价值。
工业大数据分析的定义
发动机是飞机的心脏,也是关乎航空安全,生命安全的重中之重。为了实时监控发动机的状况,现代民航大多安装了飞机发动机健康管理系统。通过传感器、发射系统、信号接收系统、信号分析系统等方式采集到的数据,会经由飞机通信寻址与报告系统,通过甚高频或者卫星通信传输出来,这就是为何GE的发动机监控系统每天会获取超过1PB数据的原因。
生产执行系统(MES)与飞机发动机健康管理系统如出一辙。我们可以从工厂的生产中,实时采集到海量的流程变量、测量结果等数据。基于大量数据集而生成的报表,或是基础统计的分析并不足以称为制造业的大数据分析。
数据类型的多样性是工业大数据分析的重要属性
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
例如,生产环境中收集的时间序列模拟流程变量,数据的类型是单一的,很容易建立索引,即使存在千千万万,也不足以成为大数据。
数据必须包括高度可变性和种类多样性。制造工厂中存在无数的大数据应用,但并不包括简单地分类和展示一连串的流程测量结果,对这些工作,基本的统计展现就可以完成。一些大数据的数据库或数据湖的构成部分也是文本信息、图像数据、地理或地质信息和非结构信息,例如,通过社交媒体或其他协作平台获得的数据类型。
制造业信息结构概括起来分为两层,一个是管理层,一个是自动化层。从经营管理、生产执行与控制三个纬度来实现决策支持、管理、生产执行、过程控制以及设备的连接与传感。制造业中大数据分析是指利用通用的数据模型,将管理层与自动化层的结构性系统数据与非结构性数据结合,进而通过先进的分析工具发现新的洞见。
大数据分析对企业生产智能的意义
制造业创新的核心就是要依托大量的前沿科技。先进的技术是创新的手段。在新技术的支持下,可以通过一体化的制造运作管理系统MOM将企业管理应用系统,例如ERP、EAM等系统与工业自动化的相关系统整合为一体。在一体化制造运作管理的基础上,我们可以实现集IT+MOM+MES+BI的一体化制造企业信息系统解决方案。
从两化融合的角度来看,信息系统供应商要从企业的主信息系统提供商(MIV,MainInformation systems Vendor )定位来做好规划、标准、功能设计、实施策略的统一性工作。协助企业做好风险控制,降低投资,降低 *** 作维护成本,实现企业信息系统全集成。
特别需要注意的是,企业管理信息平台被普遍认为是制造企业管理的集成和仪表板工具。许多供应商既大量投资其与ERP和自动化系统专有的集成,也投资开放式集成,还投资仪表板和移动技术,希望随时随地为需要正确信息的决策者提供衡量标准。
制造业大数据分析的三种途径
途径一,利用开放技术与平台,将任何系统的数据移动到任何其他地方。
制造运作管理系统建设项目是系统工程,不仅仅是一套我们理解的传统软件系统,更多的是项目执行和服务的平台。这需要在项目管理与制造企业的策略“客户服务”上,体现出制造企业的综合管理能力与软实力。
整个平台要从前期、工程实施以及售后服务这三个大的阶段来架构。在前期规划中,要重视标准、设计与实施,特别是与管理一体化的信息系统形成统一的对接。有了前期统一规划的制定,工程实施的环节可把行业的经验、集成能力、实施能力、软件开发能力等融合。特别需要在组织上建立和形成超级团队的制度。而持续服务、长期经营,将物联网应用融入与“软件+云服务”的互联网+战略是后续服务的考虑重点。
在制造业大数据分析工作中,必须要加强通过物联网科技的应用对后续持续服务的支撑作业。通过工业物联网,实现的及时响应客户、物联网软硬件系统定期巡检、提供应急备件、提供易耗品、完善应用等功能来加强和锁定与企业的供应链企业之间的长期合作。通过管理平台与物联网数据,可以持续为客户提供有价值的服务。
途径二,投资工厂内外系统架构堆栈中能够处理结构性和非结构性数据的数据模型。
新技术是创新革命的核心,其中很重要一个特点就是集成,即制造运作管理系统MOM与ERP、EAM、OA、商业分析的集成,包括一键登录、界面集成、消息推送、工作流集成、主数据、应用集成总线与平台。
由于这些系统之间主数据全部统一,所有系统之间的数据交互依靠应用系统总线进行数据交互,整合了跨系统的业务流程、工作流、服务流程等之后即实现无缝集成和分析。对于企业管理者来说,一键登录后,可以根据不同的岗位,个性化制定并且显示与管理最相关的必要信息。这就是互联网所带给我们的分享思路。
途径三,通过时间序列、图像、视频、机器学习、地理空间、预测模型、优化、模拟和统计过程控制等先进的分析工具与制造业企业内的大数据平台结合分析,从而洞见尚未显现的情况。通过传感器、感应器、传输网络和应用软件等物联网数据,与管理应用软件结合起来,将是今后制造业大数据分析的一大方向。
培养企业内部大数据分析专家
作为一个行业,我们需要有机地发展行业特定的大数据分析工具集,这样才能让现在的行业专家,从足够的数据科学中实现数字化转型。为了推动转型,我们需要一大批优秀的企业利用这种方法,并向其他人或同行证明其价值。
文/杨剑勇
以NB-IoT和LoRa为核心的低功耗广域网无线连接规模日益扩大,且5G也开启冲刺阶段,大连接将掀起新一轮信息 科技 变革,一个万物互联的时代伴随通信技术发展即将到来,只是,万物互联最终透过云端实现跨行业和跨设备互联互通,各种设备所收集到的数据经过“云”上处理,并利用这些数据将会催生众多新商业模式。
万物互联在于通信技术发展,而万物智能在于数据处理,使得各种设备具有感知能力,云端作为数据集散中心,并利用AI技术,使得万物智能得以实现。
物联网核心在于数据的收集和处理,数以万亿计的传感器被嵌入到各个角落,所收集数据经AI技术进行智能分析,正是这个小小传感器,则驱动着 社会 数字化变革,企业有能力获取无限数据,并从中洞察实现快速创新,驱动产业转型升级,基于海量数据,地区甚至可以洞悉未来商业经济。
各种智能设备和传感器联网后,所产生数据并将厘清,挖掘其价值,从而激发物联网潜力。而云服务商则打通了云、端、边,并通过AI能力助力物联网应用落地,至此,各巨头积极布局,不仅有亚马逊、微软和谷歌等国际巨头,包括BAT今年纷纷调整战略,提升云服务战略,向物联网延伸,以此抢夺这条全新赛道。
在此之前,物联网并没有得到大规模部署,物联网高级顾问杨剑勇支持,受制于传感器的部署,跨品牌、跨平台和跨设备之间互通限制,以及物联网设备碎片化等诸多因素,但一线 科技 巨头进入,并伴随传感器部署规模日益扩大,以及无线通信技术迅猛发展,经过云端把人、机器和数据连接起来,且能为物联网所产生的海量数据提供强大的计算处理的平台,是物联网发展关键所在。
至此,巨头的云服务面向各行业物联网云平台应运而生,继而激活数据价值,以丰富的应用来抢夺主导权,对于他们来说,丰富的物联网应用是争夺市场核心,在其平台比拼的是应用能力,覆盖工业、交通、教育和金融等丰富的应用,这将是争夺物联网这一张船票的核心。
物联网不断推进和部署规模日益扩大,数以百亿设备接入网络,其经济价值超10万亿美元,各种设备利用传感器收集数据,一部分在边缘侧处理,并结合云端大脑,使得设备具有感知能力,仅在工业互联网领域就能激发高达7000亿市场规模。制造业在部署各种传感器后,与云平台结合,并利用人工智能技术对数据分析,赋予工业企业依据数据具有洞察力,把制造业推向数字制造转型。
(一)微软
GE在微软Azure云平台上标准化其Predix解决方案,将Predix产品组合与Azure的本地云功能,包括Azure物联网和Azure数据与分析,进行深度整合。在农业应用方向,布勒集团作为一家食品加工系统企业,将人工智能、智能云以及物联网技术相结合,提高玉米产量,同时最大限度地减少谷物地毒害污染。
微软以云、边缘智能和人工智能构件生态,并已经广泛应用智能硬件和工业制造等各行各业,Azure IoT等服务帮助制造商实施工业40,包括ABB和西门子等工业巨擘都在利用微软Azure开发自己的物联网平台。
(二)腾讯
腾讯云和三一重工打造的工业数据根云平台,三一重工连接了全区超过30万台重型机械设备,能够实时采集近1万个运行参数,共积累1000多亿条工程机械工业大数据,实现了全球范围内工程设备2小时到场,24小时内完工的服务承诺,大大提升了运营的效率,堪称工业智慧生态中的典范。
腾讯云在华星光电应用场景中,通过物联网平台采集数据,利用腾讯优图AI图像检测技术,系统可以724小时不间断进行质检工作,准确率达到了90%以上,远远超过人的水平,整个生产周期缩短了近40%。
产业互联网最初的营收机会还是来自云业务,腾讯的云服务增长非常快,市场份额一直不断提高,并强调,云业务的本质决定了需要大量的投入,包括数据中心和服务器方面的支出,这样才有来自云服务的经常性收入。这是腾讯总裁刘炽平在此前第三季度季报后高管电话电话会议上的讲话。
特别今年新成立云与智慧产业事业群后,腾讯积极拥抱产业互联网,通过整合自身技术和生态资源,腾讯云正构筑全链路的开发者服务体系,帮助人工智能、物联网、小程序、云原生领域开发者快速成长,并促进各行业与互联网深度融合,助推产业互联网升级。
(三)百度
百度以ABC+IoT+智能边缘促进物联网在各垂直领域展开大规模应用,百度云质检云解决方案帮助宝钢建立从连接采集、存储计算到理解决策的感知认知平台,并展示了钢包内衬熔损识别的应用。还有宝钢技术和百度共同打造“智能钢包”应用,通过为钢包部署传感器,实时监控钢包状态,并结合ABC能力打造智能调度的钢包管理系统,降低50%钢包烘烤能耗,平均降低出钢温度10℃,可以节约能源成本70亿元,大约可以节约150亿元。
百度在物联网应用中能大放异彩,得益于2010年开始积极 探索 发展AI技术,应用开始在多个领域开花结果,并以百度云为平台把AI能力分享给 社会 ,从农业到工业,从家庭到 汽车 ,以及翻译、图像识别和信息流等产品和服务,百度AI商业落地走在行业前列。在百度看来,人工智能将推动全 社会 新一轮产业变革,“云”巅之上的企业正向着智能化、AI化升级。
(四)阿里
阿里云在制造业也有不少案例,通过云+AI+IoT能力先后为协鑫集成、天合光能和徐工集团等大型制造企业提供服务。基于阿里云可以轻松安全地将设备连接至云,从边缘设备到云端,从各种设备上收集数据、分析数据,帮助制造业提高运营效率,如协鑫光伏切片生产车间,生产良品率已经提升1个百分点,每年可节省上亿元的生产成本。
全球工业40和智能制造如火如荼进行中,这制造业升级大趋势下,越来越多的制造商开始评估并加大部署物联网,不仅西门子和通用电气等工业巨擘,包括 科技 企业也积极涌入,出击这个新风口,纷纷推出打通数据的工业互联网云平台,透过云端连接设备、服务和数据,并经AI技术处理,可以实时监测工厂运转状态,自主检测生产线上机械异常,以数字化来提升工厂生产率和产品合格率,推动制造业向数字化转型。
作者系物联网高级顾问杨剑勇,网易最佳签约作者,致力于深度解读IoT和AI等前沿 科技 ,基于对未来物联网洞察和对趋势判断,其观点被众多权威媒体和知名企业引用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)