物联网感知层面临的安全威胁有哪些?如何应对这些安全威胁

物联网感知层面临的安全威胁有哪些?如何应对这些安全威胁,第1张

感知层安全威胁
物联网感知层面临的安全威胁主要如下:
    T1 物理攻击:攻击者实施物理破坏使物联网终端无法正常工作,或者盗窃终端设备并通过破解获取用户敏感信息。
    T2 传感设备替换威胁:攻击者非法更换传感器设备,导致数据感知异常,破坏业务正常开展。
    T3 假冒传感节点威胁:攻击者假冒终端节点加入感知网络,上报虚假感知信息,发布虚假指令或者从感知网络中合法终端节点骗取用户信息,影响业务正常开展。
    T4 拦截、篡改、伪造、重放:攻击者对网络中传输的数据和信令进行拦截、篡改、伪造、重放,从而获取用户敏感信息或者导致信息传输错误,业务无法正常开展。
    T5 耗尽攻击:攻击者向物联网终端泛洪发送垃圾信息,耗尽终端电量,使其无法继续工作。
    T6 卡滥用威胁:攻击者将物联网终端的(U)SIM卡拔出并插入其他终端设备滥用(如打电话、发短信等),对网络运营商业务造成不利影响。

感知层由具有感知、识别、控制和执行等能力的多种设备组成,采集物品和周围环境的数据,完成对现实物理世界的认知和识别。感知层感知物理世界信息的两大关键技术是射频识别(Radio Frequency Identification,RFID)技术和无线传感器网络(Wireless Sensor Networ
k,WSN)技术。因此,探讨物联网感知层的数据信息安全,重点在于解决RFID系统和WSN系统的安全问题。

RFID技术是一种通过射频通信实现的非接触式自动识别技术。基于RFID技术的物联网感知层结构如图1所示:每个RFID系统作为一个独立的网络节点通过网关接入到网络层。因此,该系统架构下的信息安全依赖于在于单个RFID系统的信息安全。

物联网的技术原理

事实上,物联网的原理是在计算机互联网的基础上,利用RFID、无线数据通信技术,构建覆盖全球数万座建筑的物联网。在这个网络中,建筑物(物品)之间可以在不需要人工干预的情况下进行通信。其实质是利用射频自动识别技术,通过计算机互联网实现物品之间的自动识别和信息的互联与共享。

物联网的核心技术还在云计算中,云计算是物联网实现的核心。物联网的三个关键技术和领域包括:传感器技术、RFID标签技术、嵌入式系统技术。领域:公共事务管理(节能环保、交通管理等)、公共社会服务(医疗健康、家居建筑、金融保险等)、经济发展(能源电力、物流零售等)。

传感器技术是计算机应用中的一项关键技术,将传输线上的模拟信号转化为可由计算机处理的数字信号。

RFID,即射频识别,是一种集射频技术和嵌入式技术于一体的集成技术,在不久的将来将广泛应用于自动识别和货物物流管理。

嵌入式系统技术是集计算机软件、计算机硬件、传感器技术、集成电路技术和电子应用技术为一体的复杂技术。

物联网使用场景,主要体现在几个步骤:采集、传输、计算、展示

物联网终端采集数据,将数据传送给服务器,服务器存储和处理数据,并将数据显示给用户。

例如,自行车是共享的,前向过程是自行车获取GPS位置数据,通过2G网络向服务器报告,服务器记录自行车位置信息,用户在APP终端查看自行车位置。反向处理是用户向服务器发出解锁请求,服务器通过2G网络向自行车发送解锁指令,自行车执行解锁指令。

物联网的大大小小的应用都是基于正向数据采集和反向指令控制实现的。

传输模式的选择:取决于距离和功耗

物联网的联网方式:

近距离低功耗,带BLE或ZigBee。

远距离低功耗,NB-IoT或2G

近距离大数据,带WiFi

大数据远程,使用4G网络

关于网络布局:

远距离传输比短距离传输更昂贵,功耗更高。合理使用远距离和远距离配置可以有效降低物联网终端的成本。

例如,原始共享自行车被2G网络解锁,需要数据的长连接或下行短消息解锁,功耗高,下载的共享自行车丢弃了远程解锁,直接使用手机的蓝牙解锁自行车,节省数据流,降低功耗,本发明还可以提高解锁速度,剩余能量电动自行车智能充电站也是物联网的高科技产品,采用最新的窄带通信技术引领电动自行车充电设备的技术高度。

云服务设计

物联网的云服务器和应用程序设计与I互联网基本一致,Java、PHP和ASP可用于物联网的后台处理。

移动互联网是“人-服务器-人”的框架,物联网是"物-服务器-人"的框架,两者是相同的,物联网终端设备也采用TCP、>

总结简图

网络拓扑
在传统的计算机网络中,局域网终端设备之间是无逻辑关系的,各个设备之间是分散的。虽说互联网也有集群协作的计算机,但这不是普遍存在。
但物联网却不一样,物联网终端设备之间是有逻辑关系的,各个设备之间或以工作流、或以层次、或以某种复杂协调的方式来协作;也就是说,物联网设备之间只有具备协作关系,才能体现出物联网的价值。
那么,在设计物联网网络时,我们需要在网络协议设计时就在网络层考虑其逻辑关系,还是留给应用层来定义其逻辑关系?
终端数量
在一个计算机局域网下,终端数量通常在100台以下;而在一个局域物联网下,终端数量应该是在1000台以上。不光是终端数量多,还可能会有终端设备随时加入局域物联网中。
AL t4519028349240320 物联网网络和计算机网络有什么不一样的地方
因此,终端数量的增多以及新设备的随时加入,对网络协议的要求就是要有较强的自我扩展性。但是扩展性太强的网络,其安全性就会有所下降。
网络覆盖范围
对于计算机局域网来说,通常情况其覆盖范围就是室内,或者是一个办公间,最大可能是一个建筑体;但是局域物联网通常是在室外,可能覆盖的是几栋楼,一个工厂,一个街区,甚至是一个小城市。局域物联网的一个单元的覆盖距离在1~2 km范围内比较合适,这个是根据近距离无线通信自身最大传播距离来决定的。覆盖范围的不同,必然会对网络协议及组网技术提出不同的要求。
终端能力多样性及自我标识
在传统的互联网中,网络终端能力相对单一,要么手机、要么计算机。但是在物联网领域,不同行业、不同功能的物联网终端会非常多,物联网终端设备的能力也会千差万别,有的功能可能只是数据采集,有的可能有计算和通信功能,有的可能是集中控制器。
在传统的互联网中,从网络协议角度来看,其设备是无差别的。但是物联网终端设备具有众多的标识方式:二维码、RFID和蓝牙地址等,如何从网络协议上去命名这些设备也是很有必要研究的。
始终工作
在传统的计算机网络中,终端设备可以随时下线;但在物联网领域的很多行业中,由于终端设备是感知物体的,所以要求其永远处于工作状态。除了对设备本身的寿命有要求之外,对于网络协议设计来说也是一个全新的、值得去研究的课题。
安全性
在传统的计算机网络中,实际上是人在 *** 纵设备上网,因此终端设备人为参与比较多;但是在物联网中,由于终端设备数量、安装

窄带物联网技术。
NBIOT物联网弱终端检测是指窄带物联网技术。NBIOT聚焦于低功耗广覆盖物联网市场,是一种可在全球范围内广泛应用的新兴技术。
NBIOT属于低功耗广域网,主要针对的是传输数据量小,对功耗要求高,而且数量巨大的设备或物品。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12577940.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存