(1)、生产力注重效益生产环节,以生产的定量来制定生产计划或采购原材料,以严格执行安全生产的标准体系,以及生产部的具体流程和规范 *** 作流程,最重要的是,质量是第一生产力,以质量提升产品的高品质与规格。
(2)、商务力注重办公流程自动化,以各部门紧密衔接工作事务的展开,以各部门做好协调与沟通,以优化综合管理的合理配置,以要求优先发展与合理规划的统筹布局,以体现企业文化的硬实力与软实力进行双重优化的界面,以涵盖行政、商务、公关、市场的多个层面,以铸就产品市场品牌的公信力与知名度。
(3)、销售力注重专心与专业的品质,以体现销售人员的职业道德与职业素质,以用心服务于大众顾客,说得好“顾客就是上帝”,以倾力打造顾客首选可信赖的合作品牌,以全心全意为顾客着想,以全心全力为顾客提供更方便、更快捷的优质服务与增值服务,以竭尽全力提高顾客的满意度与忠诚度。
(4)、制造力注重高端一体化,以智能制造向智能创造的转变,以改变传统制造的观念,以聚合市场互联网共享资源,以有效提升制造行业的高效率运转模式,以实现高品质的市场效益而作出坚持不懈的努力。
个人总结提论:
综合上述这些几点内容,解释为:以创造市场价值为前提条件,以谋划市场机遇为有利契机,以创造未来理想的期望价值为目标,以“互联网+物联网”的时代来临,以标志着科技的含金量,以引领市场行业的新标杆,以有效拉动消费者群体的市场需求与市场供求的相互关系,以市场――渠道――客户,这体现的是市场供需之间的利益。
谢谢!
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。
在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;
在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。
一、智能交通
物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;
高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。
社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。
该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。
二、智能家居
智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;
通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;
智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;
智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。
三、公共安全
近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。
利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。
趋势和特征
物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。
物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。
物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。
环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。
在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。
通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。
可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。
通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。
此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。
未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。
通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。
市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。
以上内容参考 百度百科-物联网
物联网就业前景很好,物联网产业具有产业链长、涉及多个产业群的特点,其应用范围几乎覆盖了各行各业。
物联网专业是教育部允许高校增设新专业后,高校申请最多的学校,这也说明了国家对物联网经济的重视和人才培养的迫切性。物联网的产业规模比互联网产业大20倍以上,而物联网技术领域需要的人才每年也将在百万人的量级。
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。
1、物联网安装调试员现在很吃香在重庆城市职业学院,教师给物联网专业的学生授课。曾学习物联网技术多年的王金全近两年回到了故乡雄安,成为智慧城市的一名研发者。中移超脑、边缘计算、雄安大数据……这些雄安新区的智慧城市项目都有王金全的贡献。凭借多年积累的物联网知识和经验参与新区建设,这令王金全备感自豪。在他看来,物联网技术是新兴技术的代表,也是雄安新区的代表性产业之一。
近年来,随着物联网产业的兴起,物联网安装调试员成为热门职业。这个新职业是干啥的能为行业带来哪些改变未来的发展前景如何
2、应技术发展潮流而生
共享单车、二维码支付、智能咖啡机、手机跟踪快件信息……物联网将各类智慧设施和产品带入了人们的生产生活。如今,人们所需要的已经不仅是“随时”的快捷与“随地”的便利,还有“随物”的自由。为了能够更好地运用物联网产品为生产生活服务,熟练物联网相关技术的 *** 作人员至关重要,物联网安装调试员也就成了产业的中坚力量。
近日,人社部发布《新职业—物联网安装调试员就业景气现状分析报告》(以下简称“报告”),提出物联网安装调试员指的是利用检测仪器和专用工具,安装、配置、调试物联网产品与设备的人员,他们能熟练 *** 作物联网产品,构建物联网网络,并运用物联网技术实现生产生活的信息化、智能化,实现“物物相联”。
物联网产业要求从业者具有相应的计算机 *** 作知识和互联网网络技术,要有较强的知识更新能力与意识,是物联网、信息技术、电子信息工程等专业毕业生就业的新选择,也是能力升级、职业发展的新途径。
北京科技大学物联网与电子工程系主任王志良认为,“物联网的发展,人才是根本。物联网的大力发展为人才就业、人才培养提供了机遇和方向。” 物联网安装调试员的出现,顺应了技术发展的潮流。楼上一些回答太形而上学了,都是理论,简单的事情整复杂了,非常容易把人往沟里带。
本人从事物联网专业(说实话做了不少产品,但目前OSI七层协议都背不全),分享下自己的答案,希望能给题主一些帮助。
物联网其实是互联网的一个延伸,互联网的终端是计算机(PC、服务器),我们运行的所有程序,无非都是计算机和网络中的数据处理和数据传输,除了计算机外,没有涉及任何其他的终端(硬件)。
物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。
不过物联网的概念目前被炒到过热。鄙人大概十年前开始学习嵌入式,那个时候还没物联网、智能硬件这么高大上的字眼。相信很多前辈那时跟我一样,学的是单片机编程,大家都用“单片机”来概括这个行业。大概2012年左右,很多热钱从房市涌出,投入资本市场。正是这个时候,一大波高大上词汇来袭。服务器技术叫“云”,单片机叫“智能硬件”,网络单片机应用叫“物联网”,车载单片机应用叫“车联网”。。。呵呵。这种现象是商业进展的必要性,我们搞技术的只能跟着改头换脸,谁叫发薪水的是老板呢,呵呵。
不过受限于技术上的瓶颈,物联网的发展,其实无法像当初互联网那样爆发。或者换通俗一点的说法,大家有没有发现很多物联网的应用,其实是锦上添花的东西,需求性并没有那么强,这也就是为什么很多智能硬件卖得并不是很好的根本原因;正是因为需求性原因,所以商业上也不会出现滴滴打车那样的持续性投入,又一定钳制了技术的进一步发展。
到今年,这一波的投资热潮冷却了很多,但是在这波浪潮里,我们的社会还是发生了很多变化。首先是关注物联网的人越来越多,从业者也越来越多。而且很多大学也开设了相关课程,政府也出台了行业鼓励政策。前面我们说过物联网的概念被炒得有点过热,所以在物联网的大群体里,有两类人最为迷茫。其一就是专注物联网的创业者,其二就是物联网专业的学生。鄙人也曾经属于第一类人。
物联网的技术前景是广阔的,近些年上市的一些空气净化器产品,穿戴设备,家庭环境监控设备,在过去是不曾有的,在目前的消费背景下,正服务着大众。未来还会有更多的新式设备出现,这些正是物联网技术发展的必然结果,所以投身于物联网的技术研发,是很有前景的一件事。
然而物联网的商业前景却是复杂的,特别是对于创业者而言,这不是一个好消息。既然创业,目的肯定是赚钱,然而放眼人类社会,最赚钱的事情,其实归类起来就那么几样。首先是资源、再就是获取资源的工具,以及信息。每个企业,想要活得好,目标只有一个,就是垄断。然而社会上的大部分资源,都是垄断在大企业手里,小企业参与的,往往是跟民生有关的门槛低的行业,竞争激烈,赚钱辛苦。回到计算机行业,虽然计算机行业开放程度很高,然而垄断的存在并不亚于其他行业。英特尔、ARM等公司,基本垄断了处理器行业。微软、Google(Android)、苹果垄断了 *** 作系统。物联网是新兴市场,虽然目前容量不大,但各家各户都盯着,对于创业者而言,无法创造垄断,很难存活。创业者大部分都是小公司,你无论多么牛逼的技术,一旦有市场,大公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。你是小公司,宣传推广,也不可能投入像大公司那样的资金及影响力,所以产品再好,也不一定卖得好,这是每个技术型创业者,不得不面对的事实。
正是因为上述压力,很多创业者非常迷茫。本人过去四年间一直从事物联网行业,因此结识了很多同行,其中大部分都是创业者。这些创业者非常勤奋,对自己的想法充满热情,也往往敢于坚持。然而这些并没有什么用,大部分创业者,都没有走到今天,因为投资人的钱总是会烧完的。
我觉得想走向成功,物联网行业的创业者应该处理好两个问题。首先,应该认识到,计算机行业想突破垄断,对于大企业而言,是技术积累。然而对于个人或小团队而言,唯一的方法是缩小用户群体。就是我们应该专注于一个领域一项技术去解决一个问题。如果你说你的客户是大众每一个人,那你的东西基本一个都卖不出去。但是如果你的客户是“捷达轿车车主”+“装过电子导航系统”,那你的东西会比较好卖。缩小用户群体的好处,是大企业不会来跟你抢饭吃,而你又非常容易精准的找到你的客户并说服他们买你的东西。其次,个人或小团队,不应该有任何一刻在亏本,否则你终会难以坚持。最好的状态,应该是大家都有正职工作(收入),但是比较闲,一起来维护一款小产品,这样的情形,往往容易成功(最后团队或项目被大公司收购,实现财务自由,或职位上升)。
对于在大企业进行物联网方向研发的人员,自然不用担心收入问题,然而可能大部分时间,都要接受来自上层的任务分配。作为物联网技术从业者,我们应该认识到,这个行业的技术,还是有很多方面需要突破的,个人将一些觉得需要突破的技术陈列如下,希望在物联网方向的研发人员,可以在闲暇之余,做一下这么几方面的技术积累:
1目前国内低功耗网络技术都做得不好,包括zigbee,其实也被过分夸大宣传。
2传感器和传感输入部分,其实有很大的空间,人之所以聪明,跟手、眼、口、鼻、耳有很大关系,然而计算机的手眼口鼻耳,没一项可以跟人比。由于个人很难在芯片技术上积累,所以只能做做算法,对于视觉识别技术,各个领域,都有非常大的潜力,可以研究积累。
3降低研发难度的工具,可以关注下,目前物联网还属于教学推广阶段,能够快速帮助从业者提高研发效率的工具,可以研究积累。(鄙人正是做这一块)
4特定环境下的语音对话算法,可以研究下。目前所有的语音识别,几乎都不过是语音转文字而已,然后计算机通过词汇分析来执行任务,基本都做不了上下文对话。非特定环境下的语音对话,估计国外的苹果、google,国内的讯飞、腾讯、百度都在研究,个人技术者基本没有必要也没有机会。不过在特定环境下(比如自动导航这个环境,人的指令,只会围绕“导航”这个主题),语音对话是非常有效率的输入输出工具,值得个人研究积累。
说完创业者,再来说说各大高校的物联网专业的学习者。
其实我个人是不建议在本科搞物联网专业的,因为物联网专业不是基础学科,在本科开设,没能力的学校,也就是一个幌子,会坑不少人。有点能力的学校,也无法指望在当前的教学构架下,能让学生学到点什么。其原因就是,物联网涵盖的内容太多,随便列举列举:
1数电模电、单片机编程技术:要做物联网产品,起码,你能看得懂电路板吧,你得能给单片机写几行代码,点个流水灯什么的吧。要知道,这过去是放到自动化专业四年要学的东西啊。电路板画得好,就算在内陆省会城市,月薪也随便上万的啊,单片机写得好,月薪也一样上万的啊。打什么物联网的幌子啊!
2网络技术:光给单片机编单机程序还不行,你还得能让单片机上网吧,否则叫什么物联网。既然上网,最简单的“客户端-服务器”模型,你好歹得在云端放个服务器吧。且不说服务器程序你要自己写,到阿里云买个服务器,绑定个域名,估计你都得折腾一个礼拜。写服务器程序,那在本科也是一门专业啊,起码VC要学吧(时髦点学java)。你即会上位机,又会单片机,那你是全栈工程师啊,这工资不是更高?
3无线技术:很多产品,光一个单片机还不行,你还得整多个单片机,然后多个单片机互相整个网络,这就涉及到组网。用wifi,功耗太高。用zigbee,光协议就看死你。用蓝牙,人家构架就没这么整过。那只好自己写吧,从驱动到组网协议,你要能写全,还不出问题,那以后还有什么软件构架你整不了啊?
4传感器技术:就目前而言吧,很多传感器都是数字型的,直接丢数值出来,单片机只需连上去就可以用,难到不难。但问题是量多,测温度吧,有温度传感器;测光照吧,有光照传感器;测空气吧,有空气质量传感器;还有加速度传感器、心率传感器、颜色传感器、分贝传感器。。。大学也就四年,学单片机编程估计都要三年,你看你剩下的时间能整几个吧。
5终端技术(App):物联网物联网,你把用户搁哪啊,总要给用户丢个App来看看产品状态吧,那就得学习App怎么做。iOS和Android你还得都学了,不然用户就得减少一半,呵呵。
所以本科开设的物联网专业真的是坑啊,明摆着学校不可能教全的嘛,就算学校愿意教,学生也学不过来啊。给点可行性建议吧:
1明确正确的技术观,物联网是一个行业,而不是一个专业。学好物联网里任何一项技术,都可以独当一面,迅速实现个人价值积累(收入很赞的哦)。如果贪多贪快,除了给自己带来无尽的失望和打击,没什么好处。
2明确正确的发展方向,物联网涉及软硬件、互联网、App等多个领域,作为个人而言,只可能精其一样。如果是做硬件,那就好好学数电模电、应用电路、布线画板、传感器特性等等。如果是做软件,明确方向,一般建议本科阶段学好单片机编程、熟悉一两种传感器或应用,做一两款小产品即可。毕业后,可逐步过渡,学会和其他工程师配合,学会组网应用,多出作品练手。
3实践大于理论,学物联网或者嵌入式一定要勤上手,多出作品。多出作品,不仅可以增长技术能力、了解物联网构架,最重要的是可以提高自信心。人与人的区别,大部分都在教育,而教育成功与否,自信是非常重要的评估法则。当然,由于物联网一般都是系统产品,建议学习者可以基于成熟的构架去做产品,这样容易成功做出完整产品。可以用我们酷享物联系统,也是选择之一。
4毕业后,尽量不要去初创公司,不过初创公司也很少招应届生。一定要去中型企业或大企业的核心团队,哪怕打杂都行。无论未来是打算做市场还是做技术,一定要记得毕业招工作的时候,要想办法进企业的核心研发团队,大公司进不了,就进小一点的,再进不了,就再小一点。可能有人会问,人家不一定要我啊。对,人家不一定要你,你本科期间作出的物联网作品,就是敲门砖。
5就业后,不要急于成功,闷下心思,跟着团队技术带头人做技术。有什么做什么,尽多培养不同领域的应用,多结实靠谱的技术朋友。三五年后,某一天,你会发现你自己有技术、有团队,可以做任何产品的时候,你的路也会宽阔起来。
------------------------------------------------------------------------------------------------------
好了,广告时间到了,来说说我这两年从事的项目:
酷享物联系统,是开源、开放的物联网系统,以主机+设备的方式,原生支持常见家电控制,提供可以嵌入到设备里的无线物联模块(万纳模块)给研发者,研发者可以基于万纳模块,快速实现自己的Idea。万纳模块8个IO无需编程,就可以被配置为数字输入输出、按键、模拟采样(ADC),PWM等各种方式,极大的降低了设备的接入门槛。
由于酷享物联系统是开源系统,学习者使用酷享系统学习物联网构架的同时,还可以看到酷享物联系统的实现代码,以及诸多应用案例,以最高的效率,提升自己对物联网的理解。
案例:
植物栽培助手(不编程案例)
双向开关、智能插座(不编程案例)
情景面板(不编程案例)
LED调光器(不编程案例)
空气质量监测仪(开源案例)
补充:(2016420)
本来不想上照片的,有评论说我做的这几个作品根本没有联网,那我就发几张照片出来打脸,呵呵。
请问?系统中所有设备,都可以通过app远程联网查看,控制,怎么不是物联网????????????????
请问?系统中所有设备,可以脱离手机,通过网络互为关联,互相触发,怎么不是物联网?????????????????
对,说的就是你,让我看论文的那位!!!!!!!!!!!!!
好了,希望诸多物联网从业者也好,初学者也好,都能戒骄戒躁,努力积累,实现中国梦!哈哈哈哈工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。
所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)