必须是高效的分布式系统。物联网产生的数据量巨大,仅中国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会产生500多亿条记录。这么大的数据量,任何一台服务器都无能力处理,因此处理系统必须是分布式的,水平扩展的。为降低成本,一个节点的处理性能必须是高效的,需要支持数据的快速写入和快速查询。
2实时处理
必须是实时处理的系统。互联网大数据处理,大家所熟悉的场景是用户画像、推荐系统、舆情分析等等,这些场景并不需要什么实时性,批处理即可。但是对于物联网场景,需要基于采集的数据做实时预警、决策,延时要控制在秒级以内。如果计算没有实时性,物联网的商业价值就大打折扣。
3高可靠性
需要运营商级别的高可靠服务。物联网系统对接的往往是生产、经营系统,如果数据处理系统宕机,直接导致停产,产生经济有损失、导致对终端消费者的服务无法正常提供。比如智能电表,如果系统出问题,直接导致的是千家万户无法正常用电。因此物联网大数据系统必须是高可靠的,必须支持数据实时备份,必须支持异地容灾,必须支持软件、硬件在线升级,必须支持在线IDC机房迁移,否则服务一定有被中断的可能。
4高效缓存
需要高效的缓存功能。绝大部分场景,都需要能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。系统需要提供一高效机制,让用户可以获取全部、或符合过滤条件的部分设备的最新状态。
5实时流式计算
需要实时流式计算。各种实时预警或预测已经不是简单的基于某一个阈值进行,而是需要通过将一个或多个设备产生的数据流进行实时聚合计算,不只是基于一个时间点、而是基于一个时间窗口进行计算。不仅如此,计算的需求也相当复杂,因场景而异,应容许用户自定义函数进行计算。
6数据订阅
需要支持数据订阅。与通用大数据平台比较一致,同一组数据往往有很多应用都需要,因此系统应该提供订阅功能,只要有新的数据更新,就应该实时提醒应用。而且这个订阅也应该是个性化的,容许应用设置过滤条件,比如只订阅某个物理量五分钟的平均值。
7和历史数据处理合二为一
实时数据和历史数据的处理要合二为一。实时数据在缓存里,历史数据在持久化存储介质里,而且可能依据时长,保留在不同存储介质里。系统应该隐藏背后的存储,给用户和应用呈现的是同一个接口和界面。无论是访问新采集的数据还是十年前的老数据,除输入的时间参数不同之外,其余应该是一样的。
8数据持续稳定写入
需要保证数据能持续稳定写入。对于物联网系统,数据流量往往是平稳的,因此数据写入所需要的资源往往是可以估算的。但是变化的是查询、分析,特别是即席查询,有可能耗费很大的系统资源,不可控。因此系统必须保证分配足够的资源以确保数据能够写入系统而不被丢失。准确的说,系统必须是一个写优先系统。
9数据多维度分析
需要对数据支持灵活的多维度分析。对于联网设备产生的数据,需要进行各种维度的统计分析,比如从设备所处的地域进行分析,从设备的型号、供应商进行分析,从设备所使用的人员进行分析等等。而且这些维度的分析是无法事先想好的,而是在实际运营过程中,根据业务发展的需求定下来的。因此物联网大数据系统需要一个灵活的机制增加某个维度的分析。
10支持数据计算
需要支持数据降频、插值、特殊函数计算等 *** 作。原始数据的采集可能频次挺高,但具体分析时,往往不需要对原始收据进行,而是数据降频之后。系统需要提供高效的数据降频 *** 作。设备是很难同步的,不同设备采集数据的时间点是很难对齐的,因此分析一个特定时间点的值,往往需要插值才能解决,系统需要提供线性插值、设置固定值等多种插值策略才行。工业互联网里,除通用的统计 *** 作之外,往往还需要支持一些特殊函数,比如时间加权平均。
11即席分析和查询
需要支持即席分析和查询。为提高大数据分析师的工作效率,系统应该提供一命令行工具或容许用户通过其他工具,执行SQL查询,而不是非要通过编程接口。查询分析的结果可以很方便的导出,再制作成各种图标。
12灵活数据管理策略
需要提供灵活的数据管理策略。一个大的系统,采集的数据种类繁多,而且除采集的原始数据外,还有大量的衍生数据。这些数据各自有不同的特点,有的采集频次高,有的要求保留时间长,有的需要多个副本以保证更高的安全性,有的需要能快速访问。因此物联网大数据平台必须提供多种策略,让用户可以根据特点进行选择和配置,而且各种策略并存。
13开放的系统
必须是开放的。系统需要支持业界流行的标准SQL,提供各种语言开发接口,包括C/C++,Java,Go,Python,RESTful等等,也需要支持Spark,R,Matlab等等,方便集成各种机器学习、人工智能算法或其他应用,让大数据处理平台能够不断扩展,而不是成为一个孤岛。
14支持异构环境
系统必须支持异构环境。大数据平台的搭建是一个长期的工作,每个批次采购的服务器和存储设备都会不一样,系统必须支持各种档次、各种不同配置的服务器和存储设备并存。
15支持边云协同
需要支持边云协同。要有一套灵活的机制将边缘计算节点的数据上传到云端,根据具体需要,可以将原始数据,或加工计算后的数据,或仅仅符合过滤条件的数据同步到云端,而且随时可以取消,更改策略。
物联网是一个非常先进的、综合性的和复杂的系统。其最终目标是为单个产品建立全球的、开放的标识标准,并实现基于全球网络连接的信息共享。物联网(Internet of Things)理念指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具有“内在智能”的设备如传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等,以及具有“外在使能”(Enabled)的物品如贴上RFID的各种资产(Assets)、携带无线终端的个人或车辆等“智能化物件或动物”、通过各种无线和/或有线的长距离和/或短距离通信网络实现互联互通(M2M)、应用大集成(Grand Integration)。
物联网功能在于,能基于云计算的SPI等营运模式,在内网(Intranet)、专网(Extranet/)或互联网(Internet)环境下,采用适当的信息安全保障机制,提供安全可控(隐私保护)乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、进程控制、远程维保、在线升级、统计报表、决策支持、领导桌面(Dashboard)等管理和服务功能,实现对“万物”(Things)的“高效、节能、安全、环保”的“管、控、营”一体化服务。
具体的来说,物联网的基本功能特征是提供“无处不在的连接和在线服务”(Ubiquitous Connectivity), 具备十大基本功能。
在线监测:这是物联网最基本的功能,物联网业务一般以集中监测为主、控制为辅。
定位追溯:一般基于GPS(或其他卫星定位,如北斗)和无线通信技术,或只依赖于无线通信技术的定位,如基于移动基站的定位、RTLS等。
报警联动:主要提供事件报警和提示,有时还会提供基于工作流或规则引擎(Rule“s Engine)的联动功能。
指挥调度:基于时间排程和事件响应规则的指挥、调度和派遣功能。
预案管理:基于预先设定的规章或法规对事物产生的事件进行处置。(证据采集)
安全隐私:由于物联网所有权属性和隐私保护的重要性,物联网系统必须提供相应的安全保障机制。
远程维保: 这是物联网技术能够提供或提升的服务,主要适用于企业产品售后联网服务。
在线升级:这是保证物联网系统本身能够正常运行的手段,也是企业产品售后自动服务的手段之一。
领导桌面: 主要指Dashboard或BI个性化门户,经过多层过滤提炼的实时资讯,可供主管负责人实现对全局的”一目了然“。
统计决策: 指的是基于对联网信息的数据挖掘和统计分析,提供决策支持和统计报表功能。
物联网数据具有以上12个特点
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网这一概念提出已有20多年,但受全球各国重视是2008年和2009年这两年,各国纷纷推出物联网相关政策,我国也开启了物联网发展里程碑的年份,列为国家五大新兴战略性产业之一。经过10年发展,物联网已不再是高高在上的概念,在云+AI等技术加持下,让物联网得到了广泛应用,产业发展迅猛,也迎来了黄金发展时代。
运营商、半导体厂商、通信设备、云服务商和应用端等形成物联网产业链,而NB-IoT和LoRa等LPWA低功耗广域网通信技术,解决物联网大规模部署连接等需求,继而使得物联网在工业、零售、物流和交通等垂直领域得到广泛应用。
在产业链积极推动下,物联网连接规模成倍速度增长,LPWAN连接的复合年增长率为109%。此外物联网高级顾问杨剑勇指出,5G技术部署,也将把物联网带上更高的层次,也让万物互联成为可能,其中运营商是万物互联积极推动者,全球运营商纷纷转型寄望于在大连接时代,不再局限做一个管道提供者,希望能抢夺物联网应用端市场,例如面向工业、教育、医疗、车联网和智慧家庭等应用场景寻求机遇。
物联网在移动监测、智能可穿戴、POS机、气象、医疗和能源等行业用途很大,而且是实现设备联网不可或缺的产品,不少相关的top域名都被注册。
和传统的互联网相比,物联网有其鲜明的特征。首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。
其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。
再次,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。品牌型号:华为MateBook D15
系统:Windows 10
物联网数据特征是整体感知、可靠传输和智能处理。
整体感知:可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。可靠传输:通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。智能处理:使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。
物联网(Internet of Things,简称IoT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
物联网的主要特征有全面感知、可靠传递、智能处理。学历教育,是指受教育者经过国家教育考试或者国家规定的其他入学方式,进入国家有关部门批准的学校或者其他教育机构学习,获得国家承认的学历证书的教育形式。按照教育法律和政策规定,依照受教育者是否获得国家承认的学历证书,将教育形式分为学历教育和非学历教育。根据教育法等法律法规和国家有关规定,学历教育包括以下形式:小学、初中、高中、专科教育、本科教育、研究生教育等。物联网广泛应用于“农业 交通 医疗 工业 移动支付 家居 通信”等多个领域,服务大众
据《2013-2017年中国物联网行业应用领域市场需求与投资预测分析报告》随着我国物联网技术的研发和产业发展,预计2013年我国物联网市场规模将达到4896亿元,未来三年我国物联网市场增长率将保持在30%以上。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)