IOT网关,接收sensor数据的总入口,主要是日志,安全防护,流控,协议转换等功能,
图1 IOT网关
之前有提到IOT网关是基于python的twisted框架实现的,初期的时候该IOT网关主要实现的功能是 数据接收和转换功能 和 安全防护 。
数据接收和转换功能 ,这里很简单,拟定好数据交互格式后,IOT网关按照约定好的格式进行解析,然后转发给后端服务进行进一步的处理
安全防护 ,设备的区分主要是依靠烧录到硬件的SN号来实现,SN号包含的信息比较多,如生产批次,设备型号等,受制于厂商我安全防护不能做的非常完善,同时sensor与IOT网关的交互不能非常复杂。安全防护这一块理论上是设备接入要一型一密或者一机一密,协议上还应该启用tls/ssl安全通信协议。
图2 鉴权
安全防护要做ssl这类的安全通信协议的话,要考虑设备厂商实现通信模块能力,设备功耗,设备性能(低端设备cpu性能可能比较差,可考虑对称加密形式),IOT网关也需要引入相应模块。
另外认证从性能方面考虑,后期在设备比较多的情况下,可以加入redis等内存型key-value数据库,缓存设备信息,提高鉴权模块性能。
实践中,我们的sensor基本都是依靠电池供电,因此我们的IOT网关基本是面向短链接(后期我们有监测设备,依靠外部电源直接供电,为长连接),因此在每次发起连接我们都要进行一次鉴权,鉴权通过后,设备方可上传传感器监测数据和设备自身状态。
图3 数据交互流程
这一块的调试工作长达半年左右,才基本稳定下来,主要集中在设备商处除了硬件稳定性,还有在调试中发现传输的字符串乱码(c语言处理问题),沾包(厂商开发人员tcp协议不熟),优化传输效率,关闭cork或者 Nagle 算法(传输包很小)。
因为IOT网关不能主动断连接,理论 *** 作中,IOT网关应该和sensor有心跳协议,保证连接的有效性。设备商在数据流程交互完成后,竟然没有close 连接,直接休眠,导致网关所在服务器的连接的文件描述符一直没有正常释放,后面为了预防这种现象,我开启了 *** 作系统层面的keepalve定时器,回收失效连接(系统默认时间是2小时左右,我缩短了失效时间),理论上来说应该是应用层面去实现心跳协议。
整个IOT网关的设计,是无状态,可伸缩的,单网关在普通型ecs上可轻松达到数百tps。
冷水机组是中央空调系统的心脏,正确选择冷水机组,不仅是工程设计成功的保证,同时对系统的运行也产生长期影响。因此,冷水机组的选择是一项重要的工作。
(—)选择冷水机组的考虑因素: 建筑物的用途。 各类冷水机组的性能和特征。 当地水源(包括水量水温和水质)、电源和热源(包括热源种类、性质及品位)。建筑物全年空调冷负荷(热负荷)的分布规律。初投资和运行费用。 对氟利昂类制冷剂限用期限及使用替代制冷剂的可能性。
(二)冷水机组的选择注意事项: 在充分考虑上述几方面因素之后,选择冷水机组时,还应注意以下几点:
1对大型集中空调系统的冷源,宜选用结构紧凑、占地面积小及压缩机、电动机、冷凝器、蒸发器和自控元件等都组装在同一框架上的冷水机组。对小型全空气调节系统,宜采用直接蒸发式压缩冷凝机组。
2对有合适热源特别是有余热或废热等场所或电力缺乏的场所,宜采用吸收式冷水机组。
3制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。选择活塞式冷水机组时,宜优先选用多机头自动联控的冷水机组。
4选择电力驱动的冷水机组时,当单机空调制冷量φ>1163kW时,宜选用离心式;φ=582~1163kW时,宜选用离心式或螺杆式;φ<582kW时,宜选用活塞式。
5电力驱动的制冷机的制冷系数COP比吸收式制冷机的热力系数高,前者为后者的二倍以上。能耗由低到高的顺序为:离心式、螺杆式、活塞式、吸收式(国外机组螺杆式排在离心式之前)。但各类机组各有其特点,应用其所长。
6选择制冷机时应考虑其对环境的污染:一是噪声与振动,要满足周围环境的要求;二是制冷剂CFCs对大气臭氧层的危害程度和产生温室效应的大小,特别要注意CFCs的禁用时间表。在防止CFCs污染方向吸收式制冷机有着明显的优势。
7无专用机房位置或空调改造加装工程可考虑选用模块式冷水机组。
8尽可能选用国产机组。我国制冷设备产业近十年得到了飞速发展,绝大多数的产品性能都已接近国际先进水平,特别是中小型冷水机组,完全可以和进口产品媲美,且价格上有着无可比拟的优势。因此在同等条件下,应优先选用国产冷水机组。
总工之家-房地产技术选用平台
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)