1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。
国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。
国外有亚马逊、IBM、SAP、
谷歌、GE、西门子、博世等。
通过以上名单可以发现,这些公司的特点。
这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。
2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。
3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。
物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?
最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。
以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。
不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型
1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。
物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。
在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。
因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。
物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰
伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。
中心化的物联网架构存在三个问题。
一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。
其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。
第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。
简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。
边缘算力的应用场景到底有多广阔?
边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)
第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。
无人驾驶技术:
无人驾驶
智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:
一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。
二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。
三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。
其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。
机会很大
物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。
通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点
连接数告诉增长是物联网行业发展基础
物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。
物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。
物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。
物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等
物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>摘 要 物联网发展产生会计大数据, 传统企业信息化模式不能够低成本且有效解决会计大数据处理的问题。社会将采用会计云计算的现代信息化模式来解决这个问题。会计云计算模式(技术模式),也是一种商业模式。企业采用会计云计算的信息化模式关键是鉴别服务提供商是否能够提供适合企业特殊的业务模式与管理模式的会计云计算。
关键词 物联网; 大数据; 会计云计算
物联网不仅仅是人机物三元世界之间的“互联互通”,关键还是人机物三者之间智能自动化的“交互与协同”。在《基于物联网中“智能物件”的智能化及其机制分析》主要介绍物联网中“感知层”物件的智能化,假如把物联网比做一个人,那“智能物件”的智能化就是手脚的智能化。而物联网中的云计算则是物联网中脑的智能化。当前,物联网与云计算一起被《中华人民共和国国民经济和社会发展第十二个五年规划纲要》列为“战略性新兴产业”。云计算只有与物联网有机结合,才能够推动“信息化和工业化深度融合”。本文着重讨论物联网云计算中核心数据——会计数据的采集、分析与应用——会计云计算的相关内容。
一、会计云计算:物联网发展之会计大数据处理的必然
(一)物联网发展产生会计大数据
随着物智能化和物与网络的联接,不仅人的行为会产生大量的数据,而且物的行为也产生区量的数据。这个数据不仅仅是数字数据等结构化数据,而且包括声音、图像等非结构化的数据。这些会计大数据除了具有一般说的大数据的3个“V”的特征外,它还具有无形性与粘性的特征。
1数据数量规模大(Volume)。物联网下产生的数据数量规模大,它已经不是过去大规模数据(large scale data)、庞大数据(enormous data)、海量数据(massive data)所能够描述的,而应该是用大数据(big data)来概括。数据规模不是用GB、TB为单位而是用PB①为单位来衡量。
2数据异构的数据(Variety)。物联网下产生数据不仅包括数字这样结构化的数据,而且主要包括声音、图像等非结构化的数据。这些数据因为业务事件的关联性,从而导致结构化数据与非结构数据更加复杂,不好处理。
3数据产生与处理实时性(Velocity)。物联网条件下数据的产生与处理一般需要实时处理。传统数据对时间处理要求不高,但是,物联网下物的行为、与人的行为一般都要求在当下完成。因此,数据的产生与处理要具有实时性。
4会计数据的无形性与粘性。当前物联网上企业采集、传输、处理的数字信息主要是非价值的数量信息。这些数据可以直接被感应器所感知,从而容易被传播;而会计数据是无形的数据,它不能够被感应器所感知。同时,会计数据是直接粘合在业务数据之中,不能够脱离业务数据而存在,脱离了业务数据就失去意义。因此,会计数据具有无形性与粘性。
(二)会计大数据的处理问题:物联网发展必须解决的问题
如果说石油是工业社会的血液,那么在物联网带来的信息化社会中,数据就是信息社会中的血液,没有数据就没有信息。但是大量的大数据如果没有得到有效的利用,就会产生数据的泛滥。这也是在信息化过程中人们经常提到的数据或信息超载。大量优质的数据和劣质数据融合在一起,可能会产生各种各样的误差和错误。如果这个数据不准确就没有任何价值。如何保证数据的可信性和质量就是物联网需要解决的首要问题。其次,物联网中产生大量的数据,如何对这些大数据进行智能的挖掘和分析,产生真正的数据价值是物联网需要解决的核心问题。最后,如何对由于物联网所产生的大量的大数据进行存储和管理,并确保这些大数据的安全,是物联网下需要解决的基础问题。
(三)传统信息化模式不能够低成本、有效解决会计大数据处理的问题
推行物联网,构建智慧地球,不是简单地将实物与互联网进行连接,不是“鼠标”加“水泥”的数字化和信息化,而是需要“更透彻的感知、更全面的互联互通、更深入的智能化”。其中,更深入的智能化是需要深入分析收集到的数据,以获取更加新颖、系统且全面的洞察力来解决特定的问题。
会计大数据的实时信息获取和全面的信息分析需要企业拥有集中大数据计算处理能力、大数据存储能力和大数据交互处理能力。依据传统企业信息化模式,企业必须购置大量的数据存储服务器、计算机、雇佣专业技术人员等,这一方面需要一次性投入大量的资金;另一方面,企业还由于不具备专业化能力而无法有效对会计大数据进行实时信息获取和全面的信息分析,获取处理会计大数据的价值。
因此,基于上述分析,企业更经济、更便捷、更快速地利用会计大数据的方案就是购买会计云计算的服务。
二、会计云计算:基于技术角度与商业模式的统一体
(一)会计云计算的概念
物联网下人机物管理控制是基于信息为核心的智能控制。由于会计大数据上面的特征所带来的利用传统数据处理条件与技术的困难,会计大数据处理必须应用会计云计算的模式。当前,关于云计算是众说纷纭,没有一致的概念。美国国家标准技术研究所(NIST)的定义是,云计算是一种对IT资源的使用模式,是对共享的可配置的计算资源(如网络、服务器、存储、应用和服务)提供无所不在的、方便的、可随需的网络访问。资源的使用和释放可以快速进行,不需要多少管理代价。我国电子学会云计算专家委员会认为,云计算是一种基于互联网的、大众参与的计算模式,其计算资源(计算能力、存储能力、交互能力)是动态、可伸缩且被虚拟化的,以服务的方式提供。这种新型的计算资源组织、分配和使用模式,有利于合理配置计算资源并提高其利用率,促进节能减排,实现绿色计算。总之,会计云计算是云计算的一个组成部分。理解会计云计算也与云计算一样,可以从技术与商业两个角度进行把握。
从信息技术的角度看,会计云计算是一个分布式计算模型,包括会计硬件平台、会计云平台和会计云服务三个层次。云计算为企业提供了“按需使用”和“按使用多少付费”的软件硬件服务模式。
从商务的角度看,会计云计算是一个724小时的全天候企业 *** 作平台(Business Operations Platform),一个能够提供完整业务处理服务的企业 *** 作平台,并能够提供多个企业间的动态业务处理。多个企业通过企业 *** 作平台组成一个完整的虚拟企业网。只有一个健全的信息链才能完成企业间相互的协作和同步,各个企业才能优化它们的业务和效益。数据分析、机器学习与物联网
我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。
转至: 木马童年
>
随着全球信息化的浪潮,信息化产业不断发展、延伸,已经深入了众多的企业及个人,SOA系统架构的出现,将给信息化带来一场新的革命。
纵观信息化建设与应用的历程,尽管出现过XML(标准通用标记语言的子集)、Unicode、UML等众多信息标准,但是许多异构系统之间的数据源仍然使用各自独立的数据格式、元数据以及元模型,这是信息产品提供商一直以来形成的习惯。各个相对独立的源数据集成一起,往往通过构建一定的数据获取与计算程序来实现,这样的做法需要花费大量工作。信息孤岛大量存在的事实,使信息化建设的ROI(投资回报率)大大降低,ETL成为集中这些异构数据的有效工具。ETL常用于从源系统中提取数据,将数据转换为与目标系统相兼容的格式,然后将其装载到目标系统中。数据经过获取、转换、装载后,要产生应用价值,还需另外的数据展现工具予以实现,如此复杂的数据应用过程,必定产生高昂的应用成本。
结构化的数据管理尚可通过以上方法,予以实现其集成应用。在非结构化的内容方面,这些具有挑战性的问题令人生畏。内容管理的应用方案基于不同的信息化应用系统,而且大部分是纵向的以组织部门为界限的。在内容管理市场中,经常使用来自不同厂商的产品来提供这些解决方案。即使是同一个厂商的产品,相互之间的功能也是经常重叠,并且无法集成。
随着信息化建设的深入,不同应用系统之间的功能界限已趋于模糊。同时企业资源计划系统和协同商务系统,又需要商业智能的分析展现数据提供用户 *** 作依据。
在激烈竞争且多变的市场环境下,企业的管理模式很难固化,应用传统的信息化软件,当企业要做出一些改动时需要面对巨大的挑战。
SOA系统架构的出现,信息化变革
微软大中华区服务部总经理辛儿伦介绍说,从上世纪60年代应用于主机的大型主机系统,到80年代应用于PC的CS架构,一直到90年度互联网的出现,系统越来越朝小型化和分布式发展。2000年WebService出现后,SOA被誉为下一代Web服务的基础框架,已经成为计算机信息领域的一个新的发展方向。
SOA的出现给传统的信息化产业带来新的概念,不再是各自独立的架构形式,能够轻松的互相联系组合共享信息。
可复用以往的信息化软件。基于SOA的协同软件提供了应用集成功能,能够将ERP、CRM、HR等异构系统的数据集成。
松散耦合方式,只要充分了解业务的进程,就可以不用编写一行代码,通过流程图实现一套我们自己的信息系统。就像已经给你准备好了砖瓦和水泥,只需要想好盖什么样的房子就可以轻松的盖起。加快开发速度,并且减少了开发和维护的费用。软件将所有的管理提炼成表单和流程,以记录管理的内容,指定过程的流转方向。
更简便的信息和数据集成。信息集成功能可以将散落在广域网和局域网上的文档、目录、网页轻松集成,加强了信息的协同相关性。同时,复杂、成本高昂的数据集成,也变成了可以简单且低成本实现的参数设定。创建了完全集成的信息化应用新领域。
在具体的功能实现上,SOA协同软件所实现的功能包括了知识管理、流程管理、人事管理、客户管理、项目管理、应用集成等,从部门角度看涉及了行政、后勤、营销、物流、生产等。从应用思想上看,SOA协同软件中的信息管理功能,全面兼顾了贯穿整个企业组织的信息化软硬件投入。尽管各种IT技术可以用于不同的用途,但是信息管理并没有任意地将信息分为结构化或者非结构化的部分,因此ERP等结构化管理系统并不是信息化建设的全部;同时,信息管理也没有将信息化解决方案划分为部门的视图,因此仅仅以部分为界限去构建软件应用功能的思想未必是不可撼动的。基于SOA的协同软件与ERP、CRM等传统应用软件相比,关键的不同在于它可以在合适的时间、合适的地点并且有正当理由向需要它提供服务的任何用户提供服务。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)