云计算,大数据,物联网。
云计算的目标就是对资源的有效管理,管理的主要就是计算资源、网络资源、存储资源三个方面将以上的三种资源通过信息技术实现虚拟化,形成资池。对应用软件的d性管理(即云化软件部署),将通用的应用软件(如数据库、运行环境)封装好、标准化需要的时候调取自动部署即可。
大数据或称海量数据、巨量数据,指的是需要新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
物联网(Internet of Things, IoT)是指通过信息传感设备,按约定的协议将任何物品与互联网相连接进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的网络。物联网主要解决物品与物品、人与物品、人与人之间的互联。
相关拓展
云计算的概念:
“云”实质上就是一个网络,狭义上讲,云计算就是一种提供资源的网络,使用者可以随时获取取“云”上的资源,按需求量使用,并且可以看成是无限扩展的,只要按使用量付费就可以“云”就像自来水厂一样,我们可以随时接水,并且不限量,按照自己家的用水量,付费给自来水厂就可以。
从广义上说,云计算是与信息技术、软件、互联网相关的一种服务,这种计算资源共享池叫做做“云”,云计算把许多计算资源集合起来,通过软件实现自动化管理,只需要很少的人参与,就能让资源被快速提供。也就是说,计算能力作为一种商品,可以在互联网上流通,就像水、电、煤气一样,可以方便地取用,且价格较为低廉。
总之,云计算不是一种全新的网络技术,而是一种全新的网络应用概念,云计算的核心概念就是以互联网为中心,在网站上提供快速且安全的云计算服务与数据存储,让每一个使用互联网的人都可以使用网络上的庞大计算资源与数据中心。
以上内容参考 百度百科-云计算
物联网、AI和大数据三大中台承载丰富多元的产业智能化应用,通过数据流聚合产业生态促进农业产业化发展。
浙银数智大脑”,是数智底座,综合集成算力、数据、算法、模型、业务智能模块等资源,打造形成技术引领业务、业务积累数据、数据反哺大脑、大脑迭代升级的良性循环中枢。
物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用。
1、智能交通
对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。
不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。
2、智能家居
家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;智能体重秤,监测运动效果。
内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况; 智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备。
3、公共安全
近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
扩展资料:
物联网的关键技术
1、射频识别技术
RFID是一种简单的无线系统,由一个询问器(或阅读器)和很多应答器(或标签)组成。标签由耦合元件及芯片组成,每个标签具有唯扩展词条一的电子编码,附着在物体上标识目标对象,它通过天线将射频信息传递给阅读器,阅读器就是读取信息的设备。
2、传感网
它是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。它是比较通用的传感器。
3、M2M系统框架
M2M系统框架是一种以机器终端智能交互为核心的、网络化的应用与服务。它将使对象实现智能化的控制。M2M技术涉及5个重要的技术部分:机器、M2M硬件、通信网络、中间件、应用。
4、云计算
云计算旨在通过网络把多个成本相对较低的计算实体整 合成一个具有强大计算能力的完美系统,并借助先进的商业 模式让终端用户可以得到这些强大计算能力的服务。
参考资料来源:百度百科—物联网
大数据不是
抽样数据,而是全部的数据;
所以大数据必须依赖云计算,不可能是局域网的;
物联网目标是把所有的物体都连接到互联网,并把物体虚拟化,数据上传,自然就是大数据了。
云计算是为了大并发、大数据下的解决实际运算问题;
大数据是为了解决海量数据分析问题;
物联网是解决设备与软件的融合问题;
可见,它们之间的关系是互相关联、互相作用的:
物联网是很多大数据的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于大数据,而大数据的采集、分析同样依托云计算,物联网反过来能为云计算提供issa层的设备和服务控制,大数据分析又能为云计算所产生的运营数据提供分析、决策依据。要想简单明了地表述出大数据的概念和 *** 作,应该站在一个更高的视野来看待大数据,通常来说,站在行业的高度来看待大数据,大数据的核心在于为行业领域带来新的价值空间,通过大数据来全面重塑企业各种模式,而如果单纯地站在数据的角度来看待大数据,大数据的核心在于数据的价值化,数据价值化的过程本身就能够开辟出一个巨大的价值空间。
大数据的 *** 作要紧紧围绕大数据的价值空间来展开,目前主要的 *** 作可以分为三大块,分别是数据采集 *** 作、数据分析 *** 作和数据应用 *** 作,这些 *** 作的背后几乎涵盖了当前大数据行业的所有产业链。
数据采集 *** 作是大数据产业链的起始端,所以要想了解大数据 *** 作,首先就应该从数据采集开始。当前数据采集渠道通常有三个,一个是传统信息系统,比如各种ERP系统就是典型的代表,这些ERP系统当中的数据往往具有较高的价值密度,通常对于安全性也有非常高的要求。从数据结构上来看,传统信息系统的数据结构是相对比较单一的,处理起来也比较容易。
其二是互联网(Web)系统,相对于ERP系统来说,互联网本身就是一个巨大的数据池,这个数据池不仅承载了大量的数据,同时还在不断更新,这也为数据采集提供了天然的渠道。相对于传统信息系统来说,互联网系统本身的数据类型是比较复杂的,结构化数据、半结构化数据和非结构化数据混杂,这对于数据分析 *** 作也提出了较高的要求。
其三是物联网系统,当前物联网系统所产生的数据是大数据的主要数据来源,也可以说物联网是促进大数据概念产生的重要原因之一。物联网所产生的数据不仅数据量大,数据类型多样化,同时物联网所产生的数据还有比较低的价值密度,这对于数据分析技术提出了更高的要求。随着5G通信的落地应用,物联网本身产生的数据量会越来越大,自身的价值空间也会越来越大。
数据分析 *** 作是当前大数据 *** 作的重要环节,实际上对于大量传统行业来说,数据分析将是很多职场人需要重点掌握的技能之一。当前数据分析 *** 作有两种主要方式,一种是统计学方式,另一种是机器学习方式。统计学的数据分析方式是比较传统的数据分析方式,有大量的工具可以使用,针对于结构化数据来说,统计学的数据分析方式往往更适合一些。机器学习的数据分析方式针对于复杂的数据环境往往有更好的分析效果,但是对于数据分析人员也提出了更高的要求。
数据应用 *** 作是体现大数据价值的重要渠道,所以数据应用 *** 作也非常重要。从最终的应用目标来看,数据应用 *** 作的目标无外乎两大类,一类是人类用户,另一类是智能体(人工智能产品)。从大的发展趋势来看,在大数据时代,要想充分发挥出大数据的价值,应该重视智能体的应用渠道。大数据将推动零售业技术变革
建设强大的数据中台,实现线上线下数字化打通,重构“人、货场”,是新零售的重要内涵。业内人士指出,2018年将是大数据从技术阶段向应用阶段高速发展的一年,大数据未来在物联网、区块链、智慧城市、AR、VR、AI、语音识别等方面都值得关注,这在不久的将来或深刻改变零售业的未来。
线下零售大数据应用刚起步
近日高鑫零售公布年报,2017年实现营业收入102320亿元,同比增长19%;2017年净利润为3020亿元,同比增长149%。这是阿里入住高鑫新零售的第一年,招商证券指出,虽然阿里入股高鑫在短期内并未给高鑫业绩带来大幅改善,但是阿里的互联网基因和大数据资源加速了高鑫的线上线下整合。
在阿里与高鑫的合作中,目前仍是线上大数据指导线下商品管理,大润发华东20个城市的167家门店上架了天猫超市百万件商品,这些商品由阿里大数据根据周边消费者喜好筛选商品,并由天猫供应链优化供货方案。招商证券指出,虽然这些商品销售状况有好有坏,但整体上调整了门店的经营体系和业务链路。
基于模式和技术优势,线上零售数据的采集和大数据技术的应用已相当成熟,相比之下,线下零售大数据技术的应用还处于起步阶段。中国连锁经营协会会长裴亮曾指出,大数据技术在零售业的应用还没有发挥出来,目前来看,零售企业不掌握大数据,如何与握有大数据的企业进行合作,共同开始大数据在零售业的应用,还处在探索的过程中。
从发展现状来看,线下零售应用大数据技术首先面临的技术难点是数据采集。专家指出,线下零售店由于技术限制和消费者更加碎片割裂的行为,很难根据消费者ID数据与商品销售、店铺库存、物流等数据进行打通连接,尤其消费者店铺行为偏好数据的获取。
这方面,同时拥有门店优势和互联网基因的零售企业将占据优势。苏宁易购向中国证券报记者表示,在苏宁易购云店内的已经开始全面打造线下门店客流数据分析的“苏宁北斗”系统。该产品的上线,标志着苏宁易购在门店端开始采用类似线上页面运营的流量运营逻辑,“从用户进店以及在门店内的动线变化,进行线上UV到四级页面浏览路径的分析,对门店商品布局、用户习惯分析将有巨大的帮助”。预计到2019年,苏宁易购将会把人脸识别系统和北斗系统相结合,使监测数据更加精准,并将为后期会员服务、会员运营的优化提供数据依据。
推动零售业技术变革
苏宁控股集团董事长张近东表示,2018年将是大数据从技术阶段向应用阶段高速发展的一年,“大数据未来在物联网、区块链、智慧城市、AR、VR、AI、语音识别等方面都值得关注,这在不久的将来或深刻改变零售业的未来”。
中国电子商务研究中心主任曹磊表示,过去数据只在销售端和营销端驱动,今后还将向商品端、供应链端、仓储物流乃至生产端来进行全方位驱动。过去商品和用户是零售商和电商最核心的资产,在大数据时代,大数据将成为他们最核心的资产。
基于对线上线下数据打通的重视,2017年国美落地蒲公英计划,完成国美在线、国美Plus、国美管家、国美海外购、国美酒窖整合成国美APP,连接线上线下,以互联网为基础、数据为核心,打造线上交易、线下体验的共享零售双平台。通过实施蒲公英计划,国美线上线下的供应链数据、交易数据、服务数据、会员数据全面打通,汇聚为国美的数据中台,形成大数据工厂。
在大数据的支持下,国美升级了后服务体系,推出“扬帆计划”,实现订单配送、安装服务、维修服务、客户服务全周期的可视化、标准化,打通厂家后台数据,首创保内维修一键预约功能。
从整个产业链来看,大数据的最高效应用将是从生产端开始就实现定制,对此,已有零售业开始布局。国美将大数据应用于供应链,用C2M反向定制、家生活品类和智能产品横向延展、驱动精准选品和营销,进而与第三方供应链形成补充,提升零售效率,满足消费者品质化、个性化、智能化的产品需求,促进品质升级,优化商品结构。
数据中台并不是大数据平台。两者的区别可以体现在以下2个方面:
1)数据中台是企业级的逻辑概念,体现企业 D2V(Data to Value)的能力,为业务提供服务的主要方式是数据 API;2)数据平台是在大数据基础上出现的融合了结构化和非结构化数据的数据基础平台,为业务提供服务的方式主要是直接提供数据集。
(数据中台平台:WakeData)
(大数据平台:微软IBM)
(大数据平台:网易有数)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)