2009年,恶意软件曾 *** 控某核浓缩工厂的离心机,导致所有离心机失控。该恶意软件又称“震网”,通过闪存驱动器入侵独立网络系统,并在各生产网络中自动扩散。通过“震网”事件,我们看到将网络攻击作为武器破坏联网实体工厂的可能。这场战争显然是失衡的:企业必须保护众多的技术,而攻击者只需找到一个最薄弱的环节。
但非常重要的一点是,企业不仅需要关注外部威胁,还需关注真实存在却常被忽略的网络风险,而这些风险正是由企业在创新、转型和现代化过程中越来越多地应用智能互联技术所引致的。否则,企业制定的战略商业决策将可能导致该等风险,企业应管控并降低该等新兴风险。
工业40时代,智能机器之间的互联性不断增强,风险因素也随之增多。工业40开启了一个互联互通、智能制造、响应式供应网络和定制产品与服务的时代。借助智能、自动化技术,工业40旨在结合数字世界与物理 *** 作,推动智能工厂和先进制造业的发展 。但在意图提升整个制造与供应链流程的数字化能力并推动联网设备革命性变革过程中,新产生的网络风险让所有企业都感到措手不及。针对网络风险制定综合战略方案对制造业价值链至关重要,因为这些方案融合了工业40的重要驱动力:运营技术与信息技术。
随着工业40时代的到来,威胁急剧增加,企业应当考虑并解决新产生的风险。简而言之,在工业40时代制定具备安全性、警惕性和韧性的网络风险战略将面临不同的挑战。当供应链、工厂、消费者以及企业运营实现联网,网络威胁带来的风险将达到前所未有的广度和深度。
在战略流程临近结束时才考虑如何解决网络风险可能为时已晚。开始制定联网的工业40计划时,就应将网络安全视为与战略、设计和运营不可分割的一部分。
本文将从现代联网数字供应网络、智能工厂及联网设备三大方面研究各自所面临的网络风险。3在工业40时代,我们将探讨在整个生产生命周期中(图1)——从数字供应网络到智能工厂再到联网物品——运营及信息安全主管可行的对策,以预测并有效应对网络风险,同时主动将网络安全纳入企业战略。
数字化制造企业与工业40
工业40技术让数字化制造企业和数字供应网络整合不同来源和出处的数字化信息,推动制造与分销行为。
信息技术与运营技术整合的标志是向实体-数字-实体的联网转变。工业40结合了物联网以及相关的实体和数字技术,包括数据分析、增材制造、机器人技术、高性能计算机、人工智能、认知技术、先进材料以及增强现实,以完善生产生命周期,实现数字化运营。
工业40的概念在物理世界的背景下融合并延伸了物联网的范畴,一定程度上讲,只有制造与供应链/供应网络流程会经历实体-数字和数字-实体的跨越(图2)。从数字回到实体的跨越——从互联的数字技术到创造实体物品的过程——这是工业40的精髓所在,它支撑着数字化制造企业和数字供应网络。
即使在我们 探索 信息创造价值的方式时,从制造价值链的角度去理解价值创造也很重要。在整个制造与分销价值网络中,通过工业40应用程序集成信息和运营技术可能会达到一定的商业成果。
不断演变的供应链和网络风险
有关材料进入生产过程和半成品/成品对外分销的供应链对于任何一家制造企业都非常重要。此外,供应链还与消费者需求联系紧密。很多全球性企业根据需求预测确定所需原料的数量、生产线要求以及分销渠道负荷。由于分析工具也变得更加先进,如今企业已经能够利用数据和分析工具了解并预测消费者的购买模式。
通过向整个生态圈引入智能互联的平台和设备,工业40技术有望推动传统线性供应链结构的进一步发展,并形成能从价值链上获得有用数据的数字供应网络,最终改进管理,加快原料和商品流通,提高资源利用率,并使供应品更合理地满足消费者需求。
尽管工业40能带来这些好处,但数字供应网络的互联性增强将形成网络弱点。为了防止发生重大风险,应从设计到运营的每个阶段,合理规划并详细说明网络弱点。
在数字化供应网络中共享数据的网络风险
随着数字供应网络的发展,未来将出现根据购买者对可用供应品的需求,对原材料或商品进行实时动态定价的新型供应网络。5由于只有供应网络各参与方开放数据共享才可能形成一个响应迅速且灵活的网络,且很难在保证部分数据透明度的同时确保其他信息安全,因此形成新型供应网络并非易事。
因此,企业可能会设法避免信息被未授权网络用户访问。 此外,他们可能还需对所有支撑性流程实施统一的安全措施,如供应商验收、信息共享和系统访问。企业不仅对这些流程拥有专属权利,它们也可以作为获取其他内部信息的接入点。这也许会给第三方风险管理带来更多压力。在分析互联数字供应网络的网络风险时,我们发现不断提升的供应链互联性对数据共享与供应商处理的影响最大(图3)。
为了应对不断增长的网络风险,我们将对上述两大领域和应对战略逐一展开讨论。
数据共享:更多利益相关方将更多渠道获得数据
企业将需要考虑什么数据可以共享,如何保护私人所有或含有隐私风险的系统和基础数据。比 如,数字供应网络中的某些供应商可能在其他领域互为竞争对手,因此不愿意公开某些类型的数据,如定价或专利品信息。此外,供应商可能还须遵守某些限制共享信息类型的法律法规。因此,仅公开部分数据就可能让不良企图的人趁机获得其他信息。
企业应当利用合适的技术,如网络分段和中介系统等,收集、保护和提供信息。此外,企业还应在未来生产的设备中应用可信的平台模块或硬件安全模块等技术,以提供强大的密码逻辑支持、硬件授权和认证(即识别设备的未授权更改)。
将这种方法与强大的访问控制措施结合,关键任务 *** 作技术在应用点和端点的数据和流程安全将能得到保障。
在必须公开部分数据或数据非常敏感时,金融服务等其他行业能为信息保护提供范例。目前,企业纷纷开始对静态和传输中的数据应用加密和标记等工具,以确保数据被截获或系统受损情况下的通信安全。但随着互联性的逐步提升,金融服务企业意识到,不能仅从安全的角度解决数据隐私和保密性风险,而应结合数据管治等其他技术。事实上,企业应该对其所处环境实施风险评估,包括企业、数字供应网络、行业控制系统以及联网产品等,并根据评估结果制定或更新网络风险战略。总而言之,随着互联性的不断增强,上述所有的方法都能找到应实施更高级预防措施的领域。
供应商处理:更广阔市场中供应商验收与付款
由于新伙伴的加入将使供应商体系变得更加复杂,核心供应商群体的扩张将可能扰乱当前的供应商验收流程。因此,追踪第三方验收和风险的管治、风险与合规软件需要更快、更自主地反应。此外,使用这些应用软件的信息安全与风险管理团队还需制定新的方针政策,确保不受虚假供应商、国际制裁的供应商以及不达标产品分销商的影响。消费者市场有不少类似的经历,易贝和亚马逊就曾发生过假冒伪劣商品和虚假店面等事件。
区块链技术已被认为能帮助解决上述担忧并应对可能发生的付款流程变化。尽管比特币是建立货币 历史 记录的经典案例,但其他企业仍在 探索 如何利用这个新工具来决定商品从生产线到各级购买者的流动。7创建团体共享 历史 账簿能建立信任和透明度,通过验证商品真实性保护买方和卖方,追踪商品物流状态,并在处理退换货时用详细的产品分类替代批量分拣。如不能保证产品真实性,制造商可能会在引进产品前,进行产品测试和鉴定,以确保足够的安全性。
信任是数据共享与供应商处理之间的关联因素。企业从事信息或商品交易时,需要不断更新其风险管理措施,确保真实性和安全性;加强监测能力和网络安全运营,保持警惕性;并在无法实施信任验证时保护该等流程。
在这个过程中,数字供应网络成员可参考其他行业的网络风险管理方法。某些金融和能源企业所采用的自动交易模型与响应迅速且灵活的数字供应网络就有诸多相似之处。它包含具有竞争力的知识产权和企业赖以生存的重要资源,所有这些与数字供应网络一样,一旦部署到云端或与第三方建立联系就容易遭到攻击。金融服务行业已经意识到无论在内部或外部算法都面临着这样的风险。因此,为了应对内部风险,包括显性风险(企业间谍活动、蓄意破坏等)和意外风险(自满、无知等),软件编码和内部威胁程序必须具备更高的安全性和警惕性。
事实上,警惕性对监测非常重要:由于制造商逐渐在数字供应网络以外的生产过程应用工业40技术,网络风险只会成倍增长。
智能生产时代的新型网络风险
随着互联性的不断提高,数字供应网络将面临新的风险,智能制造同样也无法避免。不仅风险的数量和种类将增加,甚至还可能呈指数增长。不久前,美国国土安全部出版了《物联网安全战略原则》与《生命攸关的嵌入式系统安全原则》,强调应关注当下的问题,检查制造商是否在生产过程中直接或间接地引入与生命攸关的嵌入式系统相关的风险。
“生命攸关的嵌入式系统”广义上指几乎所有的联网设备,无论是车间自动化系统中的设备或是在第三方合约制造商远程控制的设备,都应被视为风险——尽管有些设备几乎与生产过程无关。
考虑到风险不断增长,威胁面急剧扩张,工业40时代中的制造业必须彻底改变对安全的看法。
联网生产带来新型网络挑战
随着生产系统的互联性越来越高,数字供应网络面临的网络威胁不断增长扩大。不难想象,不当或任意使用临时生产线可能造成经济损失、产品质量低下,甚至危及工人安全。此外,联网工厂将难以承受倒闭或其他攻击的后果。有证据表明,制造商仍未准备好应对其联网智能系统可能引发的网络风险: 2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究发现,三分之一的制造商未对工厂车间使用的工业控制系统做过任何网络风险评估。
可以确定的是,自进入机械化生产时代,风险就一直伴随着制造商,而且随着技术的进步,网络风险不断增强,物理威胁也越来越多。但工业40使网络风险实现了迄今为止最大的跨越。各阶段的具体情况请参见图4。
从运营的角度看,在保持高效率和实施资源控制时,工程师可在现代化的工业控制系统环境中部署无人站点。为此,他们使用了一系列联网系统,如企业资源规划、制造执行、监控和数据采集系统等。这些联网系统能够经常优化流程,使业务更加简单高效。并且,随着系统的不断升级,系统的自动化程度和自主性也将不断提高(图5)。
从安全的角度看,鉴于工业控制系统中商业现货产品的互联性和使用率不断提升,大量暴露点将可能遭到威胁。与一般的IT行业关注信息本身不同,工业控制系统安全更多关注工业流程。因此,与传统网络风险一样,智能工厂的主要目标是保证物理流程的可用性和完整性,而非信息的保密性。
但值得注意的是,尽管网络攻击的基本要素未发生改变,但实施攻击方式变得越来越先进(图5)。事实上,由于工业40时代互联性越来越高,并逐渐从数字化领域扩展到物理世界,网络攻击将可能对生产、消费者、制造商以及产品本身产生更广泛、更深远的影响(图6)。
结合信息技术与运营技术:
当数字化遇上实体制造商实施工业40 技术时必须考虑数字化流程和将受影响的机器和物品,我们通常称之为信息技术与运营技术的结合。对于工业或制造流程中包含了信息技术与运营技术的公司,当我们探讨推动重点运营和开发工作的因素时,可以确定多种战略规划、运营价值以及相应的网络安全措施(图7)。
首先,制造商常受以下三项战略规划的影响:
健康 与安全: 员工和环境安全对任何站点都非常重要。随着技术的发展,未来智能安全设备将实现升级。
生产与流程的韧性和效率: 任何时候保证连续生产都很重要。在实际工作中,一旦工厂停工就会损失金钱,但考虑到重建和重新开工所花费的时间,恢复关键流程可能将导致更大的损失。
检测并主动解决问题: 企业品牌与声誉在全球商业市场中扮演着越来越重要的角色。在实际工作中,工厂的故障或生产问题对企业声誉影响很大,因此,应采取措施改善环境,保护企业的品牌与声誉。
第二,企业需要在日常的商业活动中秉持不同的运营价值理念:
系统的可 *** 作性、可靠性与完整性: 为了降低拥有权成本,减缓零部件更换速度,站点应当采购支持多个供应商和软件版本的、可互 *** 作的系统。
效率与成本规避: 站点始终承受着减少运营成本的压力。未来,企业可能增加现货设备投入,加强远程站点诊断和工程建设的灵活性。
监管与合规: 不同的监管机构对工业控制系统环境的安全与网络安全要求不同。未来企业可能需要投入更多,以改变环境,确保流程的可靠性。
工业40时代,网络风险已不仅仅存在于供应网络和制造业,同样也存在于产品本身。 由于产品的互联程度越来越高——包括产品之间,甚至产品与制造商和供应网络之间,因此企业应该明白一旦售出产品,网络风险就不会终止。
风险触及实体物品
预计到2020年,全球将部署超过200亿台物联网设备。15其中很多设备可能会被安装在制造设备和生产线上,而其他的很多设备将有望进入B2B或B2C市场,供消费者购买使用。
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究结果显示,近一半的制造商在联网产品中采用移动应用软件,四分之三的制造商使用Wi-Fi网络在联网产品间传输数据。16基于上述网络途径的物联通常会形成很多漏洞。物联网设备制造商应思考如何将更强大、更安全的软件开发方法应用到当前的物联网开发中,以应对设备常常遇到的重大网络风险。
尽管这很有挑战性,但事实证明,企业不能期望消费者自己会更新安全设置,采取有效的安全应对措施,更新设备端固件或更改默认设备密码。
比如,2016年10月,一次由Mirai恶意软件引发的物联网分布式拒绝服务攻击,表明攻击者可以利用这些弱点成功实施攻击。在这次攻击中,病毒通过感染消费者端物联网设备如联网的相机和电视,将其变成僵尸网络,并不断冲击服务器直至服务器崩溃,最终导致美国最受欢迎的几家网站瘫痪大半天。17研究者发现,受分布式拒绝服务攻击损害的设备大多使用供应商提供的默认密码,且未获得所需的安全补丁或升级程序。18需要注意的是,部分供应商所提供的密码被硬编码进了设备固件中,且供应商未告知用户如何更改密码。
当前的工业生产设备常缺乏先进的安全技术和基础设施,一旦外围保护被突破,便难以检测和应对此类攻击。
风险与生产相伴而行
由于生产设施越来越多地与物联网设备结合,因此,考虑这些设备对制造、生产以及企业网络所带来的安全风险变得越来越重要。受损物联网设备所产生的安全影响包括:生产停工、设备或设施受损如灾难性的设备故障,以及极端情况下的人员伤亡。此外,潜在的金钱损失并不仅限于生产停工和事故整改,还可能包括罚款、诉讼费用以及品牌受损所导致的收入减少(可能持续数月甚至数年,远远超过事件实际持续的时间)。下文列出了目前确保联网物品安全的一些方法,但随着物品和相应风险的激增,这些方法可能还不够。
传统漏洞管理
漏洞管理程序可通过扫描和补丁修复有效减少漏洞,但通常仍有多个攻击面。攻击面可以是一个开放式的TCP/IP或UDP端口或一项无保护的技术,虽然目前未发现漏洞,但攻击者以后也许能发现新的漏洞。
减少攻击面
简单来说,减少攻击面即指减少或消除攻击,可以从物联网设备制造商设计、建造并部署只含基础服务的固化设备时便开始着手。安全所有权不应只由物联网设备制造商或用户单独所有;而应与二者同样共享。
更新悖论
生产设施所面临的另一个挑战被称为“更新悖论”。很多工业生产网络很少更新升级,因为对制造商来说,停工升级花费巨大。对于某些连续加工设施来说,关闭和停工都将导致昂贵的生产原材料发生损失。
很多联网设备可能还将使用十年到二十年,这使得更新悖论愈加严重。认为设备无须应用任何软件补丁就能在整个生命周期安全运转的想法完全不切实际。20 对于生产和制造设施,在缩短停工时间的同时,使生产资产利用率达到最高至关重要。物联网设备制造商有责任生产更加安全的固化物联网设备,这些设备只能存在最小的攻击表面,并应利用默认的“开放”或不安全的安全配置规划最安全的设置。
制造设施中联网设备所面临的挑战通常也适用基于物联网的消费产品。智能系统更新换代很快,而且可能使消费型物品更容易遭受网络威胁。对于一件物品来说,威胁可能微不足道,但如果涉及大量的联网设备,影响将不可小觑——Mirai病毒攻击就是一个例子。在应对威胁的过程中,资产管理和技术战略将比以往任何时候都更重要。
人才缺口
2016年德勤与美国生产力和创新制造商联盟(MAPI)的研究表明,75%的受访高管认为他们缺少能够有效实施并维持安全联网生产生态圈的技能型人才资源。21随着攻击的复杂性和先进程度不断提升,将越来越难找到高技能的网络安全人才,来设计和实施具备安全性、警觉性和韧性的网络安全解决方案。
网络威胁不断变化,技术复杂性越来越高。搭载零日攻击的先进恶意软件能够自动找到易受攻击的设备,并在几乎无人为参与的情况下进行扩散,并可能击败已遭受攻击的信息技术/运营技术安全人员。这一趋势令人感到不安,物联网设备制造商需要生产更加安全的固化设备。
多管齐下,保护设备
在工业应用中,承担一些非常重要和敏感任务——包括控制发电与电力配送,水净化、化学品生产和提纯、制造以及自动装配生产线——的物联网设备通常最容易遭受网络攻击。由于生产设施不断减少人为干预,因此仅在网关或网络边界采取保护措施的做法已经没有用(图8)。
从设计流程开始考虑网络安全
制造商也许会觉得越来越有责任部署固化的、接近军用级别的联网设备。很多物联网设备制造商已经表示他们需要采用包含了规划和设计的安全编码方法,并在整个硬件和软件开发生命周期内采用领先的网络安全措施。22这个安全软件开发生命周期在整个开发过程中添加了安全网关(用于评估安全控制措施是否有效),采用领先的安全措施,并用安全的软件代码和软件库生产具备一定功能的安全设备。通过利用安全软件开发生命周期的安全措施,很多物联网产品安全评估所发现的漏洞能够在设计过程中得到解决。但如果可能的话,在传统开发生命周期结束时应用安全修补程序通常会更加费力费钱。
从联网设备端保护数据
物联网设备所产生的大量信息对工业40制造商非常重要。基于工业40的技术如高级分析和机器学习能够处理和分析这些信息,并根据计算分析结果实时或近乎实时地做出关键决策。这些敏感信息并不仅限于传感器与流程信息,还包括制造商的知识产权或者与隐私条例相关的数据。事实上,德勤与美国生产力和创新制造商联盟(MAPI)的调研发现,近70%的制造商使用联网产品传输个人信息,但近55%的制造商会对传输的信息加密。
生产固化设备需要采取可靠的安全措施,在整个数据生命周期间,敏感数据的安全同样也需要得到保护。因此,物联网设备制造商需要制定保护方案:不仅要安全地存放所有设备、本地以及云端存储的数据,还需要快速识别并报告任何可能危害这些数据安全的情况或活动。
保护云端数据存储和动态数据通常需要采用增强式加密、人工智能和机器学习解决方案,以形成强大的、响应迅速的威胁情报、入侵检测以及入侵防护解决方案。
随着越来越多的物联网设备实现联网,潜在威胁面以及受损设备所面临的风险都将增多。现在这些攻击面可能还不足以形成严重的漏洞,但仅数月或数年后就能轻易形成漏洞。因此,设备联网时必须使用补丁。确保设备安全的责任不应仅由消费者或联网设备部署方承担,而应由最适合实施最有效安全措施的设备制造商共同分担。
应用人工智能检测威胁
2016年8月,美国国防高级研究计划局举办了一场网络超级挑战赛,最终排名靠前的七支队伍在这场“全机器”的黑客竞赛中提交了各自的人工智能平台。网络超级挑战赛发起于2013年,旨在找到一种能够扫描网络、识别软件漏洞并在无人为干预的情况下应用补丁的、人工智能网络安全平台或技术。美国国防高级研究计划局希望借助人工智能平台大大缩短人类以实时或接近实时的方式识别漏洞、开发软件安全补丁所用的时间,从而减少网络攻击风险。
真正意义上警觉的威胁检测能力可能需要运用人工智能的力量进行大海捞针。在物联网设备产生海量数据的过程中,当前基于特征的威胁检测技术可能会因为重新收集数据流和实施状态封包检查而被迫达到极限。尽管这些基于特征的检测技术能够应对流量不断攀升,但其检测特征数据库活动的能力仍旧有限。
在工业40时代,结合减少攻击面、安全软件开发生命周期、数据保护、安全和固化设备的硬件与固件以及机器学习,并借助人工智能实时响应威胁,对以具备安全性、警惕性和韧性的方式开发设备至关重要。如果不能应对安全风险,如“震网”和Mirai恶意程序的漏洞攻击,也不能生产固化、安全的物联网设备,则可能导致一种不好的状况:关键基础设施和制造业将经常遭受严重攻击。
攻击不可避免时,保持韧性
恰当利用固化程度很高的目标设备的安全性和警惕性,能够有效震慑绝大部分攻击者。然而,值得注意的是,虽然企业可以减少网络攻击风险,但没有一家企业能够完全避免网络攻击。保持韧性的前提是,接受某一天企业将遭受网络攻击这一事实,而后谨慎行事。
韧性的培养过程包含三个阶段:准备、响应、恢复。
准备。企业应当准备好有效应对各方面事故,明确定义角色、职责与行为。审慎的准备如危机模拟、事故演练和战争演习,能够帮助企业了解差异,并在真实事故发生时采取有效的补救措施。
响应。应仔细规划并对全公司有效告知管理层的响应措施。实施效果不佳的响应方案将扩大事件的影响、延长停产时间、减少收入并损害企业声誉。这些影响所持续的时间将远远长于事故实际持续的时间。
恢复。企业应当认真规划并实施恢复正常运营和限制企业遭受影响所需的措施。应将从事后分析中汲取到的教训用于制定之后的事件响应计划。具备韧性的企业应在迅速恢复运营和安全的同时将事故影响降至最低。在准备应对攻击,了解遭受攻击时的应对之策并快速消除攻击的影响时,企业应全力应对、仔细规划、充分执行。
推动网络公司发展至今日的比特(0和1)让制造业的整个价值链经历了从供应网络到智能工厂再到联网物品的巨大转变。随着联网技术应用的不断普及,网络风险可能增加并发生改变,也有可能在价值链的不同阶段和每一家企业有不同的表现。每家企业应以最能满足其需求的方式适应工业生态圈。
企业不能只用一种简单的解决方法或产品或补丁解决工业40所带来的网络风险和威胁。如今,联网技术为关键商业流程提供支持,但随着这些流程的关联性提高,可能会更容易出现漏洞。因此,企业需要重新思考其业务连续性、灾难恢复力和响应计划,以适应愈加复杂和普遍的网络环境。
法规和行业标准常常是被动的,“合规”通常表示最低安全要求。企业面临着一个特别的挑战——当前所采用的技术并不能完全保证安全,因为干扰者只需找出一个最薄弱的点便能成功入侵企业系统。这项挑战可能还会升级:不断提高的互联性和收集处理实时分析将引入大量需要保护的联网设备和数据。
企业需要采用具备安全性、警惕性和韧性的方法,了解风险,消除威胁:
安全性。采取审慎的、基于风险的方法,明确什么是安全的信息以及如何确保信息安全。贵公司的知识产权是否安全?贵公司的供应链或工业控制系统环境是否容易遭到攻击?
警惕性。持续监控系统、网络、设备、人员和环境,发现可能存在的威胁。需要利用实时威胁情报和人工智能,了解危险行为,并快速识别引进的大量联网设备所带来的威胁。
韧性。随时都可能发生事故。贵公司将会如何应对?多久能恢复正常运营?贵公司将如何快速消除事故影响?
由于企业越来越重视工业40所带来的商业价值,企业将比以往任何时候更需要提出具备安全性、警惕性和韧性的网络风险解决方案。
报告出品方:德勤中国
获取本报告pdf版请登录远瞻智库官网或点击链接:「链接」
所谓智慧制造、智慧机器,在硬体技术上如感测器等领域,其实都已经发展相当完备,目前最核心的关键,正如通用所关注的,是“软”的整合与服务方面,以 ServiceMax 来说,其物联网云端平台可接收物联网上各装置内建感测器的资讯,让使用单位或是维修公司了解哪个零件何时将要故障,据此排定检修更换时间,可大量提升维修效率,节省时间与成本,并且提高装置的可靠率。
现在物联网应用越来越普遍,在生活中很多见,电子标签应该也属于物联网技术应用吧。 RFID射频识别是一种非接触式的自动识别技术,它通过射频讯号自动识别目标物件并获取相关资料,识别工作无须人工干预,可工作于各种恶劣环境。
目前RFID技术在广州服装行业的应用越来越收到服装企业主的重视,通过RFID技术提供供应链管理的透明度,提高库存转转率,减少缺货损失,提升门店的消费体验 通过RFID技术基本上为服装行业带来四大类的利益:
快--物流效率快,货品交接点数快。
准--在供应链的各个环节对服装的流通资料采集准确。
防--通过嵌入理德RFID晶片到服装内部,实现防窜货和防伪功效。
服务--通过理德服装RFID智慧商店,提高消费者体验,通过互动,更多商品的展示,快速响应消费者需求来提高服务水平。
歌名:《小花猫》小花猫喵喵喵,饿著肚子咕咕叫,左瞧瞧右看看,地上小鱼快吃掉。小花猫,跳跳跳,磨磨爪子喵喵叫。左扑扑右跳跳,发现老鼠别放掉。
谁来守卫工业物联网安全 根据物联网自身的特点,物联网除了面对行动通讯网路的传统网路安全问题之外,还存在着一些与已有行动网路安全不同的特殊安全问题。这是由于物联网是由大量的机器构成,缺少人对装置的有效监控,并且数量庞大,装置丛集等相关特点造成的,这些特殊的安全问题主要有以下几个方面。
物联网机器/感知节点的本地安全问题。由于物联网的应用可以取代人来完成一些复杂、危险和机械的工作。所以物联网机器/感知节点多数部署在无人监控的场景中。那么攻击者就可以轻易地接触到这些装置,从而对他们造成破坏,甚至通过本地 *** 作更换机器的软硬体。
感知网路的传输与资讯保安问题。感知节点通常情况下功能简单(如自动温度计)、携带能量少(使用电池),使得它们无法拥有复杂的安全保护能力,而感知网路多种多样,从温度测量到水文监控,从道路导航到自动控制,它们的资料传输和讯息也没有特定的标准,所以没法提供统一的安全保护体系。
核心网路的传输与资讯保安问题。核心网路具有相对完整的安全保护能力,但是由于物联网中节点数量庞大,且以丛集方式存在,因此会导致在资料传播时,由于大量机器的资料传送使网路拥塞,产生拒绝服务攻击。此外,现有通讯网路的安全架构都是从人通讯的角度设计的,并不适用于机器的通讯。使用现有安全机制会割裂物联网机器间的逻辑关系。
智慧电网与能源参考设计
用于塑壳断路器 (MCCB) 的低功耗、低噪声模拟前端设计
高压 12V-400VDC 电流感测参考设计
用于 G3-PLC 电力线通讯的模组上系统(CENELEC 频段)
我这周在浏览物联网 (IoT) 时,想仔细看看IoT将如何使电网更加智慧(反之亦然),在整个基础设施和住宅内提供更多的资讯,实现更佳的互联互通。通过IoT,使用者、制造商和公共事业服务供应方将揭示一种全新的方法来管理装置,并最终节省资源和开销。让我们看一看世界上的智慧电表将智慧电网与你的住宅连线在一起的实现方式。
在全球都在关注能源管理和节能的当下,IoT将把智慧电网的连线优势扩充套件到公共事业供应方所完成的配电、自动化和监视之外。住宅和楼宇内,管理系统的使用将帮助使用者监视他们自己的用量并调整使用习惯。这些系统将最终通过在非高峰用电时间执行来自动调节,并且连线至感测器来监视使用者数、光照条件以及更多引数。但是,这一切都源自一个更加智慧和互连程度更高的电网。
智慧电网使IoT成为现实的第一个关键步骤是大量采用智慧仪表。目前已经连线了数百万个仪表,并且互连电网的势头仍在增长。然而,要发挥其最大潜能,智慧电网的第一步是从机械电表向智慧电子仪表的转变,其目的是建立仪表和公共事业供应方的双向通讯。
美国的智慧电子仪表的采用率接近50%,目前现场已经安装了数百万个电表,与电网互连并定期通讯。从本质上说,电表正在将它们的功能从电能计量装置扩充套件成为双向通讯系统。
现代的电子仪表必须符合特定的标准才能在智慧电网和IoT中发挥如此关键的作用。首先,仪表需要在住所和楼宇中将能耗资讯报告给公共事业单位。在美国,合适的解决方案是低功耗RF (LPRF) 通讯,使用的是Sub-1 GHz网状网路。然而,根据国别和电网属性的不同,无线解决方案也许不是最佳选择,比如说在西班牙或法国等使用有线窄带正交频分复用 (OFDM) 电力线通讯 (PLC) 的国家。没有放之四海而皆准的互联互通解决方案。使IoT成为现实需要更大量的产品组合,能够支援从有线到无线,而有时需要将二者结合起来。
第二,仪表需要通过住宅内显示器或闸道器将有用的能耗资讯传送到屋内。这些资讯使得使用者相应地调整用电习惯并降低这方面的开销。在美国,ZigBee标准与智慧能源应用系统组合使用。其他像英国或日本等国,正在评估Sub-1 GHz RF或PLC解决方案,以实现更大的覆盖范围,或者混合RF和PLC的组合实现。所以,本质上说,电表正在成为智慧感测器,用于在住宅和楼宇内外进行双向通讯的IoT,以网状网路的方式互连,同时将基本能量资料报告给公共事业单位。
此外,智慧仪表需要支援诸如动态定价、需求响应、远端连线和断开、网路安全、无线下载和安装后升级等高阶功能,这样的话,公共事业供应方也就没有必要为每个仪表都派遣一名技师了。
如你所见,智慧电网在支援IoT方面发挥了关键作用—但这只是开始。将楼宇和住宅中的装置连线在一起是发挥智慧电网全部优势的下一件要做的事,而很多创新型解决方案和便利化应用已经向用户提供。专用家庭能源闸道器、智慧应用中心或能量管理系统将使使用者更快地感受到互连电网和IoT所带来的益处。
如需了解更多资讯,立即检视智慧电源与电网解决方案
智慧电网与能源参考设计
用于塑壳断路器 (MCCB) 的低功耗、低噪声模拟前端设计
高压 12V-400VDC 电流感测参考设计
用于 G3-PLC 电力线通讯的模组上系统(CENELEC 频段)
以上由物联传媒转载,如有侵权联络删除
通用电气6q管理
通用电气(GE)的电子商务战略
1GE概述
通用电气公司(GE)是一家多元化经营的全球性企业集团,它的历史可以追溯到1878年托马斯 A爱迪生建立的爱迪生电气照明公司。1892年,爱迪生通用电气公司和汤姆森-休斯顿电气公司合并,创立通用电气公司。一百多年来,通用电气公司秉承以科技带来美好生活的理念,始终保持科技创新,保持全球领先的技术优势。目前,通用电气公司拥有24414项专利,累计居全球第一。
GE集技术、制造和服务业为一体,致力于在其所经营的每个行业取得全球领先地位。GE在2004年1月,将原有下属的13个工业集团重组为目前的11个业务集团:能源集团、高新材料集团、消费者金融服务集团、商务融资集团、医疗健康集团、消费与工业产品集团、基础设施集团、全国广播公司、运输集团、装置服务集团、保险集团。若单独排名,至少有9个业务集团可名列全球500家最大公司。GE在世界各地160个国家开展业务,其中包括在26个国家运作的270家生产厂,全球拥有员工30多万人。GE的境外收入逐年上升,1999年该公司在美国以外地区取得的收入占其1070多亿美元总收入的41%,达439亿美元。2003年销售收入达到了1342亿美元。GE在中国有悠久的历史,目前它的11个业务集团都己在中国开展业务,建立了20家办事处和近30家合资或独资企业,总投资超过15亿美元。GE仍是世界上仅有的七家3-A级工业公司之一。连续六年被《金融时报》获得“全球最受尊敬的公司”称号。
2GE的电子商务战略
从一个传统型的产业公司转变为新的电子商务企业已经被GE列为公司发展的重点。1999年,GE在其原先的六个西格玛质量、全球化和服务三个战略的基础上,又将电子商务正式列为公司业务增长的又一个发展战略。电子商务实施的头一年就为公司获得了10亿美元的网上营业收入。这使得GE这家百年辉煌的公司在新世纪保持持续高速发展的动力。这一变化在整个西方企业界都产生了巨大的影响。GE希望通过推广电子商务,为这家一个世纪以来一直处于领导地位的公司找到并建立未来的业务发展模式。在2000年,GE公司的电子商务战略方向有三方面的内容:保证每一家GE企业集团有一个客户网路中心,以提供最高质量的线上服务、销售和支援;将内部采购和供应商资源转移到网上,以充分发挥高效率和低成本的优势;不断开发新技术和服务,以增加线上销售。
实际上,一向以科技领先的GE并不是电子商务的后来者,其下属的资讯服务集团在电子资料交换(EDI)、网际网路基础上的虚拟贸易环境等领域,一直处于全球领先的地位。近年来,GE的金融、塑料、医疗器械、飞机发动机、动力系统等部门都根据自己的业务,通过网际网路进行了网上销售、客户服务、资讯释出、远端装置监控与维护以及员工招聘、内部管理等活动,其中GE集团的一个销售网站Polymerland,在2000年一周的交易量就达到500万美元,2001年实现了15至20亿美元。
GE之所以将电子商务战略提高到决定企业发展的重要高度,其原因是GE的高层充分预见到网际网路络的发展将给所有经济实体带来的影响。网际网路的发展使企业与客户、企业与员工、员工与员工之间等一切关系变得透明,知识就是力量成为过去。因为所有的人都可以轻易地同时获得大量的资讯,企业传统的经营方式将必然受到冲击,包括中间商解体、集合竞争、虚拟商业社群、对客户的完全渗透、动态价格、针对性产品、协同市场、伙伴服务等已经初步显现的企业经营模式的变化。
GE推崇电子商务,正是为了及时把握和参与这些变化,通过在销售方(客户)、购买方(供应商)、投资业务以及内部程式等方面的变化,继续在“更快、更好地使客户满意”方面保持领先,从而保持企业发展的活力,巩固其领先地位,这也是GE视变革为机遇的企业精神的又一个切实的体现。
GE迄今为止仍是全球最优秀的公司,它正以最大的热情推动电子商务的革命。这不仅决定了这个百年巨人未来的命运,也必将产生全球性的深远影响。
美国最著名的网际网路和资讯科技杂志《因特网周刊》,首次对美国各大公司做了主题为“因特网周刊100强”的调查,选出了在10个主要工业领域里最领先的电子商务企业,GE被评为2000年“本年度电子商务企业”。
3GE的电子采购系统
GE积极推进向电子商务企业的战略转型,取得了非常明显的效益。下面仅以GE下属的照明工程集团(注:该集团业务在2004年1月后合并入GE能源集团)采用了基于网际网路的电子采购系统后的情况为例:
GE的原材料成本在1982-1992年间增长了16%,而同期的价格却保持了不变甚至开始下降。为了抵消由于成本上涨带来的不利因素,GE全力以赴改进其采购方式,经过对采购过程的分析发现采购方式缺乏效率,中间交易过程过多。因为订单、收据和发货单上的资料不符,1/4以上的发货单需要重新填写。
GE照明工程集团过去每天需对许多低价机械零件向公司采购部发出询价申请。采购部每天都要向合作伙伴传送成百上千的询价单以获得最低的原材料价格。以往的手工采购程式是:对于每一笔询价申请,采购部都要对每一份询价申请附上设计图;设计图要从公司技术资料档案中检索出来,拿到影印室影印,摺叠后与询价申请一同装入信封寄出。该过程需要7天才能够完成并且非常复杂和浪费时间。由于程式繁琐、时间紧迫,公司采购部每次通常只将招标档案寄给两三家供货商。
自1996年GE启动了第一个网上线上采购系统(TPN Post)后,采购过程变得简单快捷了。如今GE照明工程集团电子采购的做法是:通过电子邮件的方式向采购部发出电子询价申请,采购部通过网际网路向全球供货商发出招标档案。该系统可自动检索出准确的设计图纸,并自动将正确的图表和附件附在电子询价单上。在采购部开始处理该采购过程的两个小时内,全球的供货商们就能以电子邮件、传真或EDI方式收到了询价单,有7天时间进行竞标准备并将标书通过网际网路传回,GE收到标书的当天就可完成评标工作,并最终选定中标人。
照明工程集团实施线上采购系统(TPN)后,获得了一系列的好处:线上采购系统使公司中60%负责采购的人员获得了解放并被重新安排了工作。采购部从大量的纸面、影印和邮寄工作中解脱出来,每月至少能够腾出6至8天的额外时间集中研究发展战略问题。由于能够线上与范围更广的供应商联络,采购中人工成本节省了30%,原材料成本也下降了5%至20%。过去通常需要18至23天来确认供货商、准备投标请求、与供货商谈判价格并签署合同等事宜,现在只需要9至11天。交易过程自始至终通过电子方式进行 *** 作,收据与采购定单自动相一致,反映出整个过程发生的全部变动情况。世界各地的采购部门就最好的供货商的情况互相交流资讯。1997年2月,GE照明工程集团通过网际网路发现了7个新的供货商,其中一家的报价甚至比另一家的报价低20%。GE估计,仅全面转变采购方式一项每年就可以为公司节省5至7亿美元。
GEHC江娱德通用电气医疗系统贸易发展(上海)有限公司(TD)地址:
上海市兴义路8号万都中心1101室
邮政编码:200336
电话:(8621)52574640-64000
传真:(8621)52080002
GEHC通用电气亚洲超声部地址:
上海兴义路8号万都中心1105--1108室
邮政编码: 200336
电话:(8621)52574640-64136
传真:(8621)52080582
GEHC通用电气上海外高桥物流部及仓库地址:
上海外高桥保税区冰克路777号上外四号库二楼
邮政编码:200131
电话:(8621)58692900
传真:(8621)58692911
GEHC通用电气上海国贸办事处地址:
上海市延安西路2200号 上海国际贸易中心2701室
邮政编码:200336
电话:(8621)52574530
传真:(8621)62191584
GEHC通用电气上海万都办事处地址:
上海兴义路8号万都中心24层
邮政编码: 200137
电话:(021)52574650
传真:(021)52082008 52082012
通用电气(中国)研究开发中心有限公司
地址:张江高科技园区蔡伦路1800号
电话:50504666
通用电气工业系统(上海)有限公司
地址: 冰克路777号
电话: 58692900
通用电气照明有限公司
地址: 嘉定区南翔镇真南路4727号
电话: 59127777
通用电气(中国)照明技术中心
地址: 嘉定区南翔镇大桥头西
电话: 69179474
通用电气有机矽(上海)有限公司
地址: 松江区松江镇工业区松胜路218号
电话: 57747366
GE-东芝有机矽上海有限公司
地址: 上海市外高桥保税区爱都路56号
电话: 021-50460460
通用电气药业(上海)有限公司
地址:中国上海浦东张江高科技园区牛顿路1 号
电话:+86 21 38954500
还有一些GE只列了电话号码的,就只能列电话给你了:
GE中国
(021) 6288-1088
GE中国 新闻中心
(021) 6288-1088
中国技术中心
(021) 5050-4666
GE基础设施集团
水处理
(021) 3222-4747
GE工业集团
Fanuc自动化
(021) 3222-4555
GE工业集团
(021) 2401-3333
感测与测量
(021) 3222-4555
家电
(021) 2401-3333
检测科技
(021) 3414-4620
照明
(021) 2401-3333
NBC环球
CNBC
(021) 6288-1088
在物联网时代,车载装置会及时提醒司机减速换道行驶;老人如遇意外跌倒、生病或异常状态都可以通过远端网路,传递给社群或子女;智慧化楼宇中的感测器检测到主人离开后,能自动通知控制器关闭水电气和门窗,并对住宅内的安全情况进行监控,实时向主人的手机发送异常情况报告。
你也可以去物联商业网上看下相关内容
杰夫·伊梅尔特(Jeffrey R Immelt)是通用电气(GE)公司现任董事长兼执行长。
如何用物联网资料来构建工业智慧 得益于物联网和工业40的兴起,最近几年,不少企业已经通过物联网的手段,建立起了资料采集,监控和展示的平台。对于资料的深层次应用,例如利用最新的机器学习演算法,对资料进行智慧化提升,则是目前工业使用者进行数字化转型的必由之路。
从现在的趋势来看,人工智慧的热点领域都集中在语言、影象互动类, 或者商业应用类。对于工业领域,基于物联网获取的流式资料,如何通过人工智慧来实现效率提升?在使用这些资料的过程中,如何避免踩坑,顺利进行方案的部署?这是工业界需要解决的问题。为此,本期硬创公开课,雷锋网邀请了觉云科技CEO常伟来为大家讲解如何用物联网资料来构建工业智慧。详情可以咨询统一通讯官网网站
那么,在探讨存量工厂智能化转型之前,我们首先要知道几个概念:物联网是什么?工业互联网又是什么?
简单来说,工业互联网由工业物联网和产业互联网组成。
工业物联网是物联网(IoT)在工业场景的应用,可以打通工业“人机物法环测”六大要素。
产业互联网使产业链上下游互联互通。
工业互联网+云计算+大数据处理+人工智能,构成针对工业的综合性技术。
对于单体工厂来说,IoT是变成智能工厂的第一步,只有迈出了这第一步,才能实现数字化、智能化。
阿尔卑斯系统集成(大连)有限公司(简称“ALSI”)为制造业提供多元化智能工厂规划方案。其中,ALSI大连IoT解决方案主要根据制造现场实际情况,完成“人机物法环测”六要素有效数据的自动采集与上传,并进行数据分析与管理。
总体来说,ALSI大连IoT解决方案有五大特点:
1适用范围广。无论是由专用设备组成的产线,还是通用设备,都可以采用。
2具有强大的兼容性。无论一条产线上有多少种不同品牌、型号的设备,都可以统一入网进行全自动数据采集。
3接口完全开放,可与各种管理软件无缝衔接。如MES、PLM、WMS,都可调用ALSI的IoT解决方案采集的数据,也可以通过ALSI直接定制智能产线控制系统,实现现场管理的智能化转型。
4传感器技术先进。ASLI大连的集团公司ALPSALPINE,是世界知名的传感器研发生产企业,品质卓越,技术领先。“稳定”、“安全”是它的特点;“精准”、“可靠”是客户对它的评价。ALSI大连在IoT解决方案中根据应用场景需求选用最适合的传感器,完成向智能工厂转型的坚不可摧“基建”工作。
5成本相对较低、实施难度小。以生产设备智能管理为例,其成本仅为PLC的1/3,加装数采设备时不用停产,而且数采设备可以随时更换,或用于其它设备或产线,自由、方便、灵活。
对于存量工厂而言,一味地追求智能工厂建设不科学,而直接转变为“黑灯工厂”更是不现实的事情,在一定的 历史 时期,我们要考虑智能工厂的目的是什么,或者说,对于存量工厂来说,什么才是“智能工厂”,那一定是落地的、切实可行、将影响降到最小的解决方案,才是其智能化的切入点。
更多智能制造解决方案详见
ALSI大连_精益生产_智能工厂_设备监控系统_阿尔卑斯系统集成(大连)有限公司工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,将传统工业提升到智能工业的新阶段。物联网在工业领域的主要应用环保监测及能源管理、工业安全生产管理、制造业供应链管理、生产过程工艺优化、中国计算机报制图等等方面。物联网在工业应用领域的应用,构成了“工业物联网”,它是广域的物联网的具体化的实例,也是最容易被世人接受的物联网。工业物联网的核心理念是交叉学科的组合,涉及到信息安全、网络通信、自动化,是跨学科的,其特征为:嵌入式、互通和实时性、经济性和便利性。
工业用传感网络层:即以二维码、RFID、传感器为主,实现对“物”或环境状态的识别以及感知信号的摄入;
传输网络层:即通过现有的互联网、广电网、通信网或者下一代互联网(1Pv6),实现数据的传输和计算,尤其是现在流行的概念:云计算:
应用网络层:即输入输出控制终端,包括电脑、手机等终端等等。
从整体上来看,物联网还处于起步阶段,而工业物联网的真正达到实用化、大规模应用,必须解决如下关键技术问题:
工业用传感器:工业用传感器是一种检测装置,能够测量或感知特定物体的状态和变化,并转化为可传输、可处理、可存储的电子信号或其他形式信息。工业用传感器是实现工业自动检测和自动控制的首要环节。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。可以说,没有众多质优价廉的工业传感器,就没有现代化工业生产体系,更谈不上工业物联网。
工业无线网络技术:工业无线网络是一种由大量随机分布的、具有实时感知和自组织能力的传感器节点组成的网状(Mesh)网络,综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,具有低耗自组、泛在协同、异构互连的特点。工业无线网络技术是继现场总线之后工业控制系统领域的又一热点技术,是降低工业测控系统成本、提高工业测控系统应用范围的革命性技术,也是未来几年工业自动化产品新的增长点,已经引起许多国家学术界和工业界的高度莺视。
工业过程建模:没有模型就不可能实施先进有效的控制,传统的集中式、封闭式的仿真系统结构已不能满足现代工业发展的需要。工业过程建模是系统设计、分析、仿真和先进控制必不可少的基础。
"数字化"一般指的是通过使用数字技术和数据分析来改进业务流程,提高工作效率,降低成本,提高客户满意度等。
以下是数字化系统的一些常见类型:
企业资源规划系统(ERP):帮助企业管理和整合其资源,包括人力资源,采购,生产,销售,财务等。
客户关系管理系统(CRM):帮助企业管理客户关系,包括客户数据,销售机会,客户服务,市场营销等。
商业智能系统(BI):帮助企业利用数据和分析提高决策效率,识别商机,监测业务状况等。
工业物联网系统(IIoT):帮助企业连接和管理物理设备,包括生产设备,运输设备,物流设备等。
数字化营销系统:帮助企业通过数字技术,如社交媒体,搜索引擎优化,电子邮件营销等,提高营销效果。
这些数字化系统是不断发展和演变的,企业通过选择
什么是工业物联网平台?工业物联网平台就是一种工业物联网软件,它允许组织安全地管理工业物联网生态系统中所有互联的人员、系统和物体。那,工业物联网平台具有哪些特点呢?
一、什么是工业物联网平台
定义工业物联网平台时,要认识到,物联网创建了一种新的集成水平,随着成千上万的工业物联网设备连接到网络上,企业需要管理的端点数量比以往任何时候都要多得多。但是,这不是简简单单的设备问题,工业物联网网络实际上是一个由人、系统和物体组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理这个生态系统中的每个元素。
最好的工业物联网平台可以将设备与企业应用软件完美整合,使得数据能够在互联的人、系统和物体之间无缝而安全的流动。
工业物联网平台应具备以下功能:
▲设备整合功能
这涵盖了工业物联网上传感器、执行器、标签和信标等所有设备的配置、管理和淘汰。工业物联网平台应该能够自动摄取物联网数据,并使其可用于网络上的其它元素。
▲数据整合功能
工业物联网的价值就在于数据,必须能够对其进行捕获、集成和管理。工业物联网平台将新的物联网主数据与现有的应用软件数据以及来自社交媒体等其他来源的数据关联起来,以探求其相关性。
▲流程整合功能
作为数字生态系统的一部分,工业物联网元素并非孤立于业务运作之外。工业物联网解决方案必须嵌入到企业业务流程和工作流程中。为此,工业物联网平台将物联网业务逻辑整合到其他后端系统中,并将物联网数据部署到工作流程管理中,从而实现物联网解决方案、业务流程和工作流程的整合。
▲生态系统服务
工业物联网平台负责安全地建立、启动和管理数字生态系统中人、设备、数据和设备的可信交互。
二、工业物联网平台有哪些类型
虽然工业物联网平台研发的初衷是为了管理和控制工业物联网设备与数据,但已经发展出了许多不同类型的平台以适应不同的用例。实际上,很难对工业物联网平台进行归类,反而工业物联网平台供应商正在改进其平台产品以满足客户要求和特定业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网端点管理与连接性,物联网数据的捕获、摄取与处理,数据的可视化与分析,以及将物联网数据整合到业务流程和工作流程中。
在比较不同类型的平台时,都应基于组织的业务需求和特定的IT基础架构,并将之与工业物联网的解决方案相匹配。
三、工业物联网平台具有哪些特点
因此,最佳的工业物联网平台因组织而异,并且单一的平台功能集无法为每个用例提供足够的解决方案。但无论如何,任何工业物联网平台都应具备以下特性:
▲安全
安全是工业物联网平台的核心,既要保护所有的物联网端点免受外部网络攻击,又要应对源自组织内部的潜在恶意活动。
▲连接性
必须快速安全地配置每个工业物联网设备,并管理其生命周期的所有阶段,包括在按需配置、注册、激活、挂起、未挂起、删除和重置设备时对其进行跟踪与授权。
▲集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备无缝而安全地与不同的企业应用软件、云服务、移动APP和传统系统连接并共享信息。
▲识别
工业物联网平台能够为最广泛的物联网设备提供支持。无论在工业物联网架构中的任何地方,都能够自动感知物联网设备的存在,以建立安全连接,并可以快速地建立设备凭证,或在需要时将其自动分配。
▲分析
物联网设备极大地增加了组织内的数据量。工业物联网分析应该是工业物联网平台最强大的功能之一。它能够将工业物联网数据进行适当的可视化和分析,并从中提出切实可行的见解,用于改进数据驱动型决策。
四、工业物联网平台能改变什么
工业物联网平台是物联网项目成功实施的基础。没有有效的平台,任何大规模的工业物联网部署都不能实现其全部价值。最好的工业物联网平台能够给组织带来很多效益,包括:
▲降低成本
管理和维护迥然不同的工业物联网设备和网络,成本高昂、耗时且复杂。工业物联网平台将整个管理流程集中到一起,能够大幅度地降低企业的负担和成本。(来源物联之家网)另外,随着越来越多的组织寻求工业物联网供应商来管理其网络,最好的工业物联网平台使得供应商能够提供按需付费的定价模式。
▲改善运营
工业物联网解决方案能够提供设备性能和人员的实时信息,以帮助简化和改进业务流程和工作流程。通过捕获物联网数据并将其与其他内部、外部来源的数据进行整合,工业物联网平台可促进诸如预测性维护以及基于跟踪的供应链可见性等领域的运营改进。
▲提高生产效率
平台为部署新的工业物联网应用软件(例如DigitalTwins数据孪生)打好了基础。利用这些软件来进行新产品的设计、研发与生产,将有助于推动企业创新和提高生产效率。
▲物联网数据货币化
创新型公司已经开始利用他们从物联网数据获得的洞察力来开发新的产品和服务。在产品的整个生命周期中,售后与服务比原始采购更加有利可图。工业物联网平台能够在产品生产及使用的每个阶段捕获数据并进行分析。这样就可以创建新的数据驱动型服务以及开发全新的数据驱动型产品。
▲提高物联网安全
众所周知,物联网设备缺乏企业级的安全性。工业物联网传感器等设备除了执行特定的通知任务之外,几乎没有什么计算能力,也无法提供多层安全性。工业物联网平台能够提供所有的身份管理功能,例如安全认证与授权,以确保物联网端点不会受到网络攻击。
五、关于正达信通ZedaCloud物联网云平台
ZedaCloud物联网云平台是基于云计算原理开发的物联网应用系统,是ZedaSmart云边端物联网整体解决方案的核心,是一个综合性的物联网解决方案。ZedaCloud物联网云平台基于微服务架构设计,满足分层分布式计算架构,支持私有化和公有云两种部署方式,既可单机系统部署,也可集群部署,灵活应变,满足不同的应用需求。平台可适配于各种物联网应用系统,支持包括mqtt、modbus、NB-IoT、LoRa等在内的多种通信协议,实时监测接入设备和传感器的数据及运行状态。并且,还能与市面上绝大多数物联网硬件无缝对接,完成物联设备的数据接入、控制、存储、分析、展示等,实现对硬件设备的远程管理,做到精确感知、精准 *** 作、精细管理、智能分析,可应用于工业领域的设备管理、能源管理、安全环保,应用于结构体安全监测、地质灾害监测,应用于建筑领域的机房动环监控、楼宇综合监控等应用场景。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)