在物联网趋势中,这三种技术各自具有什么优势。
谁才会是你专业领域的最佳拍档?
物联网、大数据、AI人工智能这几个词汇,相关产业人员想必娴熟于心。
在物联网的技术架构中,“感测”是最基础的核心源头,无论在农业、工业、建筑、交通、医疗等领域,要让感测到的数据透过AI分析,进而形成相关应用,首先必须部署适合的传输技术与网域,才能搜集并回报巨量的环境数据。
在无线通信技术里,WI-FI、bluetooth、ZigBee、Z-Wave这几项较早推出的应用已经于不同领域中奠定发展基础。
WI-FI适用于大数据量的传输,比如影音传输或者A R/V R等领域,同时也是一般无线网络的基础,缺点是耗电量大;蓝牙多用于个人穿戴式装置,在声音领域的应用较为成熟
ZigBee和Z-Wave则是在工业、建筑等自动控制应用中成果丰硕。
谈到无线网络,大家脑中想到的,除了WI-FI之外,大概就是手机的移动式通信网路了。
如今的通讯技术即将迈入5G,讲求更大带宽、更高速率、更低延迟,当然也更耗电,由于是对应人与人之间的通讯,因此数据传输较密集、交换量也更为庞大。
针对M2M的通讯,由于装置的部署范围通常更宽广,且无线装置必须避免频繁更换电池,LPWAN(Low Power Wide Area Network,低功耗广域网)技术顺势而生,其小数据量、长距离传输及省电的特性,在物联网应用领域中大放异彩。
较早期的无线传输技术,如WI-FI、ZigBee和Z-Wave,通讯传输距离顶多只有100公尺,用在智能家居领域,必须再加装讯号加强的天线或中继站。
若是要满足智能城市的相关应用,例如环境监测或资产追踪,传输距离可达20公里的LPWAN技术显然能大幅缩减布建成本,只要几个基站就能覆盖大面积的范围;以电池作为电力来源,则省略了布线问题,让传感器的安装步骤更简易。
目前最受关注的LPWAN技术分别是LoRa、Sigfox和NB-IoT,这三种技术具有各自的优势,业主可根据不同领域及使用需求,选择最适合的通讯技术。广州金冠物联网表 *** 作步骤。
1、金冠物联网表红色按键短按,可以依次查看余量、单价、累积量、时间、表号。
2、用户缴费后次日凌晨会自动同步到表,若急需使用,长按红色按钮3至5秒,液晶显示send时松开,通信成功液晶显示succ,即可使用。
选择吸盘天线(容易划伤漆面) 2 天线厂有配套的夹具 注意:天线的延长线尽量要长,至少要4米(根据你的车大小)。
种类
(1)立柱天线安装在前立柱上,可分为立柱埋入式和安装在立柱外式,其结构简单、成本低,由于使用不便及不美观,使用量在逐渐减少,主要用于AM/FM收音机。
(2)车顶篷天线安装在顶篷上面,由于安装在车顶上,靠旋转铰链,拉杆的倾斜度可自由调整,作为收音机接收用天线,从立体停车场及造型发面考虑、全长200mm以下的天线使用较多,主要用于AM/FM收音机和电话。
(3)电动天线安装在前翼子板和后翼子板上,靠电机驱动,拉杆可自动伸缩,分为收音机关联动和手动两种,主要用于AM/FM收音机。
(4)风挡玻璃天线安装在后风挡、侧风挡、前风挡位置,在前风挡玻璃上印刷金属导线而成为天线;由于天线型式的面积不能取得充分利用,而引起的灵敏度不足时,多采用放大器或匹配电路。
为缩短开发周期,将过去的试验方法改为现代的开发方法,引入理论设计化的方法;主要用于AM/FM收音机、VICS、FM多重、TV、电话、遥控。
(5)翼子板鞭状天线安装在前翼子板和后翼子板处,在前或后的翼子板固定1根天线,多在出口北美的车上装用,主要用于AM/FM收音机。
(6)接插天线安装在仪表板内和顶蓬上面,印刷在陶瓷底板上表面的插接模式及在背面的接地面间给电的天线,具有一定的指向性,在GHz频带以上的频率使用;GPS、VICS电波信标、ETC。
(7)螺旋天线安装在顶蓬上面,由线圈状的天线构成,有在与轴垂直面内产生直线偏波的方式和在轴向产生圆偏波的两种方式,主要用于AM/FM收音机、卫星收音机。
(8)喇叭形天线安装在前格栅,具有导波管的前端逐渐向外扩展的构造天线,有圆形和矩形两种;在与开口垂直的方向上具有较为敏锐的指向性;在GHz频带上的频率使用;主要用于微波雷达。
(9)薄片天线安装在前风挡、侧风挡和后风挡处,在透明的薄片上印刷金属导体的导线,贴在风挡玻璃上;主要用于微波雷达。
百度百科-汽车天线
您好,家庭使用WiFi首先需要办理一个宽带,然后购买无线路由器即可组建WiFi网络了
路由器的安装和设置方法如下:
1、首先路由器和宽带猫电脑连接,如图:
2、然后打开浏览器输入路由器的管理地址和登录密码。
3、登录后台后,点击设置向导,然后根据向导指示填写相应的参数即可。
4、选择联网模式一般是pppoe,然后点击下一步输入宽带帐号和密码,点击下一步:
5、宽带参数设置完后,进入无线设置界面,填写一个无线名称和密码如图:
6、无线设置完毕后,点击保存,然后重新启动路由器即可正常使用了。
一、卫星电视接收系统的组成:卫星电视接收系统是由:抛物面天线、馈源、高频头、卫星接收机组成一套完整的卫星地面接收站。
1抛物面天线是把来自空中的卫星信号能量反射会聚成一点(焦点)。
2馈源是在抛物面天线的焦点处设置一个惧卫星信号的喇叭,称为馈源,意思是馈送能量的源,要求将会聚到焦点的能量全部收集起来。前馈式卫星接收天线基本上用大张角波纹馈源。
3高频头(LNB亦称降频器)是将馈源送来的卫星信号进行降频和信号放大然后传送至卫星接收机。高频头的噪声度数越低越好。
4卫星接收机是将高频头输送来的卫星信号进行解调,解调出卫星电视图像信号和伴音信号。
卫星扩播电视信号的极化方式。
卫星电视信号的极化方式有四种:右旋圆极化、左旋圆极化、垂直极化和水平极化。因前两种极化不常用,现只介绍垂直极化(V)和水平线极化(H)的接收方式。
垂直极化和水平极化的接收,是改变馈源的矩形(长方形)波导口方向来确定接收的是垂直极化或水平极化。当矩形波导口的长边平行于地面时接收的是垂直极化,垂直于地面时接收的是水平极化。极化方向(极化角)又因地而异有所偏差。因为地球是个球体,而卫星信号的下行波束却是水平直线传播,这就造成不同方位角所收的同一极化信号有所不同,所以地理位置不同,所接收的信号极化方向也有所偏差。馈源的长形波导口(极化方向)将不完全垂直或水平于地面。调整极化方向时应注意这一点。
家用卫星接收系统及进CATV系统的方框示意图:
天线的安装:
安装抛物面天线时,一般按厂家提供结构图安装。各厂家的天线结构都是大同小异基本相同。天线的结构反射板有整体成形和分瓣两种( 2M以上的反射板基本为分瓣),脚架主要有立柱脚架和三脚架两种(立柱脚架较为常见),个别一点八米以下脚架为卧式脚架。抛物面天线的结构见图。以下是基本安装步骤:
卧式脚架装在已准备好的基座上,校正水平,然后坚固脚架铁丝及焊接固定(卧式脚架须先调好方位角后方可固定脚架)。
装上方位托盘和仰角调节螺杆。
依顺序将反射板的加强支架和反射板装在反射板托盘上,在反射板与反射板相联接时稍为固定即可暂不紧固,等全部装上后,调整板面平整再将全部螺丝坚固。这里提起注意的是分瓣反射板有些厂家是无顺序的可随意拼装,但有些三瓣是有安装馈源支杆的安装点,这三瓣须三分安装在里面,否则馈源支架装上后不对称馈源与天线的反射焦点不能重合影响信号增益甚至收不到信号。整体成形的反射板装上托盘架后直接将反射板装在方位托架上即可。
装上馈源支架,馈源固定盘。
馈源、高频头的安装与调整:把馈源和高频头和连接其矩形波导口必须对准、对齐、波导口内则要平整,两波导口之间加密封圈,拧紧螺丝防止渗水,将连接好的馈源高频头装在馈源固定盘上,对准抛物面天线中心位置集中焦点。
顺便介绍一种计算天线焦距简单计算方法:
根据物面天线焦距比公式:F/D≈034~04,现以3M天线为例计算其焦距F=3ⅹ035+015=12(米),式中015为修正值。3M 天线焦距为12米。
系统调试
现介绍一种不知卫星方位角仰角,没有调试仪器情况下进行系统调试方法。系统调试必须把接收机、电视机拿到安装天线现场进行调试,安装现场必须有电源。以上准备工作做好后,下一步就是系统调试,步骤如下:
1、首先根据所要接收的卫星,把卫星接收机所接收的频道频率调准。有的卫星接收机频率显示为卫星频道的下行频率37GHz~42GHz,有的是显示高频头的输出中频 950MHz~1540MH,即是卫星接收机的接收输入中频频率。当碰上这情况时,用高频头的本震频率 5150MHz减去中频频率得出的是卫星频道的卫星下频率。
2、把所有的连接线接收,根据所要接收信号的极化方式粗调馈源,按极化要求调好馈源的波导口方向。
3、把天线反射面转向正南方向,松开仰角调节杠,让反射面上下调节灵活方便。然后根据所要捕捉的卫星定点的经度和调式所在地的地理位置,向东或向西一点一点转动天线反射面来改变反射面的方位。每转动一点方位后缓慢上下调节重复如此直至出现信号,确认是所要接收的卫星节目,然后保持信号强度暂固定仰角,进行下一步方位角微调。
4、使天线反射面朝单一方向水平转动,观察电视图像。使捕捉到卫星信号从有到无,从强信号到弱信号转至信号刚好消失,在脚架立术托盘交接处上下画一条直线与地面垂直作记号,再反转天线,使卫星信号图像在电视机中从弱到强,再从强到弱,转至信号图像刚好消失,在方位托盘记号处向下延伸立柱上画一直,这时立柱上已有两条直线作记号。重复以上步骤反复几次,确认立柱二记号点位置无误后,把方位托盘记号转至立柱二记号点之间的中心线位置,这就是所要调试卫星的方位角位置。把紧固方位角的螺丝坚固,方位角调试完毕。
5、微调仰角:用微调方位角的方法,在仰角调节杆上取二点作记号,用同样方法进行仰角微调。
6、馈源焦距及极化方向微调:用调方位角和仰角的方法微调焦距和极化方向。当馈源长度有限,焦距微调不适合以上方法时,这时电视图像画面噪声波点已委少或已没有了噪波点,可在馈源中塞点纸使画面出现较多的噪波点,然后调节馈源观察电视画面调至器噪波点减至最少,即调准了焦距。
7、至此,系统接收调试完毕,撤去现场调试设备,连接好高频头与室内接收机的同轴电缆,如果是多户接收或进CATV系统侧装上功分器,有必要时加装线路放大器。
卫星天线角度计算公式及示意图
卫星天线安装主要调整三个角度,按先后次序分别为仰角、方位角、高频头极化角。
方位角计算公式:Az=arctg(tgX/sinY)
仰角计算公式:El=arctg[(cosXcosY-01513)/(1-cos²Xcos²Y)开根]
极化角=X(当X为正值,高频头顺时针转动X度,反之逆时针转动)
X=卫星经度-接收地经度
Y=接收地纬度
如何装配第一个套站
对绝大多数安装卫视接收套站的朋友来说,安装第一个套站是个难点,一是购买器件难(大多只能邮购),二是安装调试难。下面谈几点意见供没装机,想装机的朋友参考。
1、 了解自己所处的地理环境(经度、纬度),确定哪颗星可收视(能收到、不加密、语种适合自己)。
2、 确定自己的意向消费,准备投入多少?价格一般1600-3000元之间。主要功能大同小异。 上面两条以自己本人的意向报刊杂志一般都有介绍,可参考《卫视周刊》、《电子报》、《寻星2000》等,一般都会有收获。
3、 选择销售商,应选择正规网站和报刊广告刊出的销售商,这种邮购有保障,报刊也有义务保护你的权益。最好先电话联系,选择的产品是否有货,包括产地、运输方式,并准确告知你的详细地址、电话等,以便及时收货、提货。 4、 选择好天线安装点,机器安放处,准备好之间的连接电缆。英制、公制F头视高频头、机器罗口而定。天线安装点的定位视当地经、纬度,一般正中向南,可向东、向西转动,前方没阻挡物,包括树木、凉晒的衣服。我们一般可收视的卫星从169°E至765°E,如地处上海(122°E)为正南,收1005°E中卫一号,天线向西约22°的方位;收泛美2号169°E,则向东约46°;以此测定。
5、 收货后查看收到的件数是否缺少,是否与购买的相符,确定高频头到底是什么本振频率,这很重要,因为有多种本振频率,如单本振有11300,11250等,双本振有09750/10600,19750/10750,本振频率错了就收视不到!按天线安装示意图安装固定的天线座,装上天线、高频头。准确装上F头,不要短路!连接至接收机。
6、 以收1005°E Ku节目为例,(调天线时本人一定要看到电视屏幕的变化),进入菜单到"安装",输入高频头本振频率10750;高频头电源为"开";进入"转发器设置",输入下行频率:12220,水平极化,符码率:23900,0-22K,开,PID设置:关;按OK;这时会出现"讯号质量", "图像质量",两个指示条,一般不可能收到讯号,下面讯号应有一定指示,图像指示为空白,然后慢慢调节天线,到两讯号都有指示,图像出来,固定天线,再调信号较弱的北京台,输入12329,水平,06930,一般应收到图像,如有马赛克或黑屏,慢慢调节天线方位和仰角。高频头极化角,调至图像清晰后彻底固定。机器安装调试好后,再输入其它频率,如12339,12349,12371,如方便一组AV接入电视机,一组AV接入功放,效果更佳。
7、 完成以上工作,你可设法收视其它节目了(换星),当然是轻车熟路了。1、画两个简单的图形。
2、输入UC命令,在d出的UCS窗口中切换到设置上。
3、接下来用UCS命令设置一个原点,输入UCS命令。
4、接着提示 *** 作,指定一个原点,选矩形的左下角,然后空格确定。
5、这时再用UC命令,再到UCS的设置里面,将显示于UCS原点(D)前面的勾再选上。
6、确定后,发现坐标系就出现在矩形左下角的点上了。这样解决了CAD坐标弄出来的问题了。
扩展资料:
1、绘制步骤:设置框架→设置单位和精度→创建几段→设置对象样式→开始绘制。
2、工程图始终使用1:1的比例。要更改图案的尺寸,可以在打印时在纸张空间内设置不同的打印比例。
3、在处理较小面积的图案时,可以将图案的比例因子值错开;相反,当处理同轴区域的图案填充时,可以增加图案的比例因子值。
4、为不同类型的原始对象设置不同的级别,颜色和线宽,并且原始对象的颜色,线型和线宽应由多层(BYLAYER)控制。
5、当需要精确绘制时,可以使用扩展的捕捉功能并进行其他替换以设置适当的值。
6、不要在同一张中绘制框架和图形,应将框架插入版式中的块(LAYOUT)中,然后打印出。
7、在著名的对象上,例如视图,级联,图块,线条样式,文字样式,打印样式等,命名应简明扼要,也要遵循一定的规则,逐步进行搜索和使用。
说到“终端”,相信大家一定不会觉得陌生。
我们每天形影不离的手机,还有上班时经常使用的电脑,都被称为终端。
终端是离用户距离最近的节点,也是用户与系统之间的接口。用户访问和接入网络,必须依靠终端。
进入21世纪以来,随着物联网的诞生和发展,终端的种类迅速增加。它们的连接对象不再仅仅是人,而是延伸到世间万物。
例如,家里的门锁、电灯、电器,城市里面的路灯、水电表、垃圾桶,甚至包括单车、 汽车 、无人机,联网之后,都变成了终端设备,统称为 物联网终端 。
2019年6月,国家工信部正式发放了5G商用牌照,标志着迈入了“万物互联”的5G时代。
5G凭借大带宽、低时延、广覆盖等特点,不仅将消费互联网的用户体验推向了更高的水平,也极大地推动了百行千业的物联网场景孵化和落地。
例如,5G结合4K/8K超高清视频技术,甚至VR/AR技术,可以实现海量视频数据的无线传输,摆脱有线传输带来的空间束缚。
再例如,5G智能制造场景下,采用了5G技术的工业机器人,控制消息的时延极低,可以完成高精度的 *** 作,提升生产效率。
5G强大的网络通信能力,为行业应用场景的完美实现,奠定了坚实的基础。然而,它也给终端产品设计带来了巨大的挑战。
尤其是终端产品的信号收发能力,如果无法满足要求,那么即使网络再好,也是“有网无端”,难以发挥5G的真正价值。
那么,影响物联网终端信号收发能力的最关键部件,究竟是什么呢?
相信大家都已经猜到了,没错,就是 天线 。
天线,英文名叫做antenna,是所有通信设备最重要的部件之一。它的好坏,直接关系到终端的通信能力以及工作效率。
一直以来,天线都是终端的设计重点和难点。5G的到来,更是将天线的设计难度推向了难以想象的高度。
首先,5G终端要支持 多天线技术 ,以满足超高传输速率要求。
5G的超高速率(Gbps以上),要求强大的多天线系统性能支持极强的数据吞吐能力。为了实现高速率,5G引入了Massive MIMO(大规模天线)技术,终端天线需要同步支持。5G还引入了Beamforming(波束赋型),终端天线同样需要支持。
其次,5G终端天线必须有 合理的布局设计 ,尽可能小型化。
终端天线一般分为外置天线和内置天线。外置天线我们见得比较多,体积较大,独立于设备之外。而内置天线体积小巧,集成在物联网设备内部。
现在的物联网终端,一般都要求体积小巧,且内置天线更加美观,更具市场竞争力,所以,越来越多的终端厂商选择 内置天线方案 。
在本已狭小的设备内部空间,塞入5G天线,谈何容易?
天线是敏感元件,放置位置和方式有严格的限制,不是随便乱塞的。如果布局设计不合理,可能导致和其它器件之间的互相干扰,出现电磁兼容性(EMC)问题。
5G频段,中低频有Sub-6 GHz频段(甚至700MHz频段), 高频有毫米波频段。频率跨度大,意味着天线尺寸跨度也大,加上多制式网络的支持,要求天线必须具备很好的调谐能力,这也大幅增加了天线的设计难度。
在设计天线布局时,还必须要考虑用户使用场景和方式。例如,5G手持终端需要考虑手部握持的位置,5G踏板车需要考虑天线会不会被骑手身体阻挡,等等。
第三个设计难点,在于 功耗控制 。
功耗是物联网终端的命门。如果天线设计未经优化,会加剧电池的消耗速度。
5G作为高性能终端,功耗设计压力本来就大。如果天线额外增加了对电池的消耗,无异于雪上加霜。试想一下,如果5G终端需要频繁更换电池,用户体验从何谈起?随之而来的成本增长,又该如何面对?
除了上述几点之外,终端天线设计需要考虑的因素还有很多,例如新工艺新材料的应用,产品耐用性、可靠性、易安装性的增强,等等。
对于终端厂商来说,要在研发和设计5G终端天线时面对这么多的挑战,实在是力不从心。
有些厂商,因为忽视对天线的前期设计,导致产品定型后发现性能受限,工作效率无法符合设计需求,最终不得不花更多的经费、时间和精力,对天线进行重新设计。
也有的终端厂商,虽然知道天线的重要性,但缺乏天线专业人才,不具备合格的天线设计和测试能力,只能束手无策。
面对5G终端天线设计的诸多挑战,国内模组行业的领军企业——上海移远通信,提出了自己的见解和应对方案。
对于移远通信,行业内的读者一定都非常熟悉。他们是全球领先的物联网解决方案供应商,模组出货量排名前列,拥有涵盖2G/3G/4G/5G、NB-IoT/LTE-M、车载前装、安卓智能和GNSS模组的完备产品线。
作为模组厂商,移远通信在天线设计领域拥有丰富的行业经验积累。
目前,移远通信已成功推出250多种天线产品,包括胶棒、组合式、出线式、磁吸式等外置天线,以及PCB、FPC、SMD、陶瓷等内置天线,覆盖包括5G在内的不同技术的物联网应用。
移远通信认为,终端厂商选择多个供应商,采购组件,然后集成到一台设备中的传统方式,已经无法满足5G终端的天线设计需求。 无线模组和天线由一家能同时提供应用方案的供应商进行整合设计,将是5G时代终端天线设计的主流趋势。
无线模组、天线分开设计和采购,就好像是一辆 汽车 升级时只换发动机,或者只换车架、轮胎,缺乏整体上的考虑,性能提升始终有限。
而整合设计的方式,是站在更高的视角,进行全局考虑。无线模组和天线之间能达到更好的协同,发挥最佳性能。
例如5G天线的调谐能力,在整合设计的前提下,表现肯定优于分开设计。
除了达成5G的指标要求之外,整合设计也有利于减小5G终端的整体尺寸,减少对空间的占用。对于系统功耗和散热控制来说,整合设计也有明显优势。
系统级整合方案还有一个显著的优点,就是降低5G终端的设计难度,方便厂商们以更快的速度推出产品,抢占市场。
移远通信的“无线模组+天线”整合设计方案,既充分利用了自身在模组领域领先的技术实力和经验,又发挥了全定制天线设计、集成和制造能力,可以说是如虎添翼,让5G客户实现拿来即用,减少其在5G技术上的研发投入,缩短开发周期,助力产品快速上市。
移远通信拥有专业的天线团队,天线服务贯穿咨询与评估、设计、测试和认证、生产制造等各个环节,可以提供一站式服务。
除了设计能力赋能之外,移远通信天线服务还充分考虑了质量方面的保障,以及延伸服务能力的加强。
为了保证天线产品的质量,移远通信具备完善且严格的质量流程,可以提供完善的测试系统和设备。移远还可以提供射频设计审查和整机EMC/Desense排查测试,帮助客户解决最常见的难点、痛点,大幅减少开发工作量。
延伸服务能力方面,移远通信的服务网点遍布全球各地,可以提供本地化技术支持服务,更快响应客户需求,为客户终端快速抢占市场全方位“护航”。
移远还可以综合评估运营商要求,进行预认证测试、OTA优化,为客户节约各项成本,加速终端上市,抢占5G市场先机。
随着5G网络建设的提速,我们整个 社会 正在加速走向数字化、智能化。
以5G终端为代表的海量物联网节点,正在遍布地球的每一个角落,它们是数字化网络的神经末梢,也是构建精彩数智世界的基石。
我相信,在不久后的将来,在完善的设计服务加持下,还会有更多优秀的5G终端产品甚至爆款产品出现,颠覆我们的认知,彻底改变现有的工作和生活方式。
未来已来,让我们拭目以待!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)