为了确定一个电阻值未知的电阻用一个已知的电阻和它并联接入电路测得R的电流为总电流的

为了确定一个电阻值未知的电阻用一个已知的电阻和它并联接入电路测得R的电流为总电流的,第1张

真的打不开噎!
不过,并联分流,U1=U2=U,I1+I2=I,I1R1=U1,I2R2=U2,所以:R1/R2=I2/I1,假设未知电阻为R’,对应电流为I’;R支路电流为I,总电流为I,那么,R’/R=I/I’;R’/(R’+R)=I/(I’+I)=I/I;而看题目的意思,I/I好象是已知的,由于你那图打不开,就假设I/I=k吧,也就是说R’/(R’+R)=k;R’/R=k/(1-k),所以,R’=kR/(1-k)。

小学六年级奥数题及答案

工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/204/5+1/309/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20(16-x)+7/100x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×05=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多05天)
1/甲=1/乙+1/甲×05(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=85天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12(18-12)=1/126=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。
解:设停电了x分钟
根据题意列方程
1-1/120x=(1-1/60x)2
解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只
解:
4100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
1.把1至2005这2005个自然数依次写下来得到一个多位数1234567892005,这个多位数除以9余数是多少
解:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次类推:1~1999这些数的个位上的数字之和可以被9整除
10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除
同样的道理,100~900 百位上的数字之和为4500 同样被9整除
也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;
同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005
从1000~1999千位上一共999个“1”的和是999,也能整除;
200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 B/(A+B)
前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,
问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
3.已知ABC都是非0自然数,A/2 + B/4 + C/16的近似值市64,那么它的准确值是多少
答案为6375或64375
因为A/2 + B/4 + C/16=8A+4B+C/16≈64,
所以8A+4B+C≈1024,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6375
当是103时,103/16=64375
4.一个三位数的各位数字 之和是17其中十位数字比个位数字大1如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数
答案为476
解:设原数个位为a,则十位为a+1,百位为16-2a
根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,则a+1=7 16-2a=4
答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数
答案为24
解:设该两位数为a,则该三位数为300+a
7a+24=300+a
a=24
答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少
答案为121
解:设原两位数为10a+b,则新两位数为10b+a
它们的和就是10a+b+10b+a=11(a+b)
因为这个和是一个平方数,可以确定a+b=11
因此这个和就是11×11=121
答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数
答案为85714
解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)
再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x
根据题意得,(200000+x)×3=10x+2
解得x=85714
所以原数就是857142
答:原数为857142
8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数
答案为3963
解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9
根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察
abcd
2376
cdab
根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。
先取d=3,b=9代入竖式的百位,可以确定十位上有进位。
根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再观察竖式中的十位,便可知只有当c=6,a=3时成立。
再代入竖式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。
9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数
解:设这个两位数为ab
10a+b=9b+6
10a+b=5(a+b)+3
化简得到一样:5a+4b=3
由于a、b均为一位整数
得到a=3或7,b=3或8
原数为33或78均可以
10.如果现在是上午的10点21分,那么在经过2879999(一共有20个9)分钟之后的时间将是几点几分
答案是10:20
解:
(28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20
四.排列组合问题
1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种 B 32种 C 24种 D 2的10次方中
解:
根据乘法原理,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
2 若把英语单词hello的字母写错了,则可能出现的错误共有 ( )
A 119种 B 36种 C 59种 D 48种
解:
5全排列54321=120
有两个l所以120/2=60
原来有一种正确的所以60-1=59
五.容斥原理问题
1. 有100种赤贫其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根据容斥原理最小值68+43-100=11
最大值就是含铁的有43种
2.在多元智能大赛的决赛中只有三道题已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )
A,5 B,6 C,7 D,8
解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。
分别设各类的人数为a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然后将④⑤⑥代入①中,整理得到
a2×4+a3=26
由于a2、a3均表示人数,可以求出它们的整数解:
当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22
又根据a23=a2-a3×2……⑤可知:a2>a3
因此,符合条件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。
故只解出第二题的学生人数a2=6人。
3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
答案:及格率至少为71%。
假设一共有100人考试
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5题中有1题做错的最多人数)
87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)
100-29=71(及格的最少人数,其实都是全对的)
及格率至少为71%
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?
答案为21
解:
每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法
当有11人时,能保证至少有2人取得完全一样:
当有21人时,才能保证到少有3人取得完全一样
3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
解:需要分情况讨论,因为无法确定其中黑球与白球的个数。
当黑球或白球其中没有大于或等于7个的,那么就是:
64+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
65+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
65+2+1=33
如果黑球或白球其中有等于9个的,那么就是:
65+1+1=32
4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次 *** 作,使得这四堆石子的个数都相同(如果能请说明具体 *** 作,不能则要说明理由)
不可能。
因为总数为1+9+15+31=56
56/4=14
14是一个偶数
而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。
七.路程问题
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑37x米=21x米,则狗跑54x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

新奥数能科技有限公司是国内领先的数字能源平台运营商,由其打造和运营的泛能网平台,正在为全国各地的园区和用能企业提供能源管理、能效提升、智慧运维等多维服务,释放安全、高效、经济、清洁价值。

一、 小卫家里养了20只兔子,其中大兔只数是小兔的4倍,问小卫家养的小兔和大兔各有多少只?
二、 2、被除数、除数、商三个数的和是212,已知商是2,被除数和除数各是多少?
三、 3、某校四、五年级共有学生218人,五年级学生人数比四年级的2倍少22人。问四、五年级各有学生多少人?
四、 4、两数相除,商3余4,如果被除数、除数、商及余数相加,和是43,求被除数和除数。
五、 5、姐姐有连环画38本,妹妹有连环画52本,姐姐要给妹妹多少本连环画,才能使妹妹的本数是姐姐的2倍?
六、 6、两箱茶叶共176千克,从甲箱取出30千克放乙箱,乙箱的千克数就是甲箱的3倍。两箱原有茶叶多少千克?
七、 7、甲数是乙数的3倍,丙数是乙数的4倍,丁数是丙数的一半,四个数的和是1040,丁数是多少?
八、 8、四个数的和是408,这四个数分别能被2、3、5、7整除,而且商相同。这四个数分别是多少?
九、 9、两个数相除商9,无余数,被除数、除数与商的和是89,除数是多少?
十、 有三堆煤,甲堆比乙堆的3倍多30千克,丙堆比乙堆少15千克,三堆煤共240千克,那么,甲堆有煤多少千克?
十一、 分子、分母之和是23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是1/5,原来分数是几分之几?
十二、 甲、乙两数的和是16,甲数的3倍等于乙数的5倍,较大的数是多少?
十三、 商店运来桔子、苹果、香蕉共53千克,桔子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,桔子重量是多少千克?
十四、 两个数的和是682,其中一个加数的个位是0,若把0去掉,则与另一个数相同,这两个数各是多少?
十五、 甲、乙两人共有150张画片,甲的张数比乙的2倍多30张,两人各有几张画片?
十六、 在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于多少?
十七、 体育室买来75个球,其中篮球是足球的2倍,排球比足球多3个,这三种球各多少个?
十八、 甲、乙两人共有钱10000元,甲用去2000元,乙用去500元,乙剩下的钱比甲剩下的钱的2倍多300元。甲、乙两人原来各有钱多少元?
十九、 大、小两个数的和是352,如果将较小的数的小数点向右移动一位,正好得较大的数。较大的数是多少?较小的数是多少?
二十、 甲仓库存粮108吨,乙仓库存粮140吨,要使甲仓库的存粮是乙仓库的3倍,那么必须从乙仓库内运出多少吨放入甲仓库?
二十一、 育才学校把85元奖学金发给甲、乙两位同学,甲得的2/9与乙得的1/4相等。甲得多少元?乙得多少元?
二十二、 甲、乙、丙三个工人,由于超额完成任务,共得奖金120元,甲得的3倍等于乙得的5倍,乙得2倍等于丙得的3倍,甲、乙、丙各得奖金多少?
二十三、 一个四位数,在它的某位数字前面加一个小数点,再和这个四位数相加,得数是200081,求这个四位数。
二十四、 24、甲、乙、丙三个数的和为2450,甲数的1/5是乙的1/3,是丙的1/2,问甲、乙、丙各是多少?
二十五、 有货物108件,分成四堆存放在仓库里,第一堆件数的2倍等于第二堆件数的一半,比第三堆件数少2,比第四堆件数多2,问每堆各存放多少件?
二十六、 五(1)班有学生63人,已知男生占女生的4/5,这个班有女生多少人?
二十七、 张、王、李三人共有存款6300元,已知张与王存款的比是5:6,李的存款占王的2/3,张有存款多少元?
二十八、 28、甲、乙、丙三数的和是100,甲数除以乙数,或丙数除以甲数,结果都是商5余1。问乙数是多少?
二十九、 29、把100拆成两个自然数的和,一个是7的倍数,另一个是11的倍数。这两个自然数分别是多少?
三十、 30、甲、乙两仓库存有化肥323吨,从甲仓库运出它的1/3,从乙仓库运出它的1/4,剩下的两仓库的重量相等,原来乙仓库有化肥多少吨?
三十一、 31、有红糖、白糖750吨,白糖卖出1/9后还比红糖多15吨,原有红、白糖各多少吨?
三十二、 32、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元,如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?
三十三、 1、甲、乙、丙三个中队,共有图书498册,如果甲中队给乙中队4册,乙中队给丙中队10册,那么三个中队的图书册数相等。原来甲中队有图书多少册?
三十四、 2、小虎做一道减法题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是577。这道题的正确答案是多少?
三十五、 3、同学们玩扔沙袋游戏,甲、乙两班共有140只沙袋,如果甲班先给乙班5只,乙班又给甲班8只,这时两班沙袋数相等。两班原来各有沙袋多少只?
三十六、 4、在做一道加法式题时,某学生把个位上的5看作9,把十位上的8看作3,结果和得123。正确的答案是多少?
三十七、 5、小文在计算两个数相加时,把一个加数个位上的1错误地当作7,把另一个加数十位上的8错误地当作3,所得的和是1946,原来两数相加的正确答案是多少?
三十八、 6、小马虎做一道减法题,把被减数十位的6当作9,把减数个位的3当作5,结果是217,正确的答案是多少?
三十九、 7、小军在做一道减法题的时候,真粗心!把被减数个位上的3错写成8,十位上的0错写成6,这样他算得的差是199,正确的差是多少?
四十、 8、如果某数扩大5倍,再减去6得39,如果这个数先减去6,再扩大5倍得多少?
四十一、 9、某数加上1,减去2,乘3,除以4得9,求这个数。
四十二、 10、某数加上6,乘6,减去6,除以6,其结果等于6,求某数。
四十三、 11、有一老人说:把我的年龄加上17用4除,再减去15后用10乘,恰巧是100岁。这位老人今年几岁?
四十四、 12、一根绳子剪去一半多04米,再剪去余下的一半,还剩43米,这根绳子原来长多少米?
四十五、 13、有一根铁丝,第一次用去它的一半少1米,第二次用去了剩下的一半多1米,最后还剩25米。这条铁丝原来长多少米?
四十六、 14、甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送丙组5本,结果三个组所有图书刚好相等。问甲、乙、丙三个组原有图书多少本?
四十七、 15、有甲、乙两堆小球,各有若干个。按下面的要求移动小球:先从甲堆拿出和乙堆同样多的小球放到乙堆;再从乙堆拿出和这时甲堆同样多的小球放到甲堆。这时,甲乙两堆的小球恰好都是16个。问甲、乙两堆最初各有小球多少个?
四十八、 16、有一个数,除以5,乘4,减去15,再加上35等于100,这个数是多少?
四十九、 17、甲、乙、丙三人共有人民币168元,第一次甲拿出与乙同样的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这时甲、乙、丙三人的钱数恰好相等。原来甲比乙多多少元?
五十、 18、有甲、乙、丙三个数,从甲数取出15加到乙数,从乙数取出18加到丙数,从丙数取出12加到甲数,这时三个数都是180,甲、乙、丙三个数原来各是多少?
五十一、 19、小明爷爷今年的年纪减去15后,缩小4倍,再减去6后,扩大10倍,恰好是100岁。请你算一算,小明爷爷今年多少岁?
五十二、 20、某人去储蓄所取款,第一次取了存款数的一半还多15元,第二次取了余下的一半还多10元,这时还剩125元。他原来存款多少元?
五十三、 21、书架分上、中、下三层,一共分放192本书。现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同。试问:这个书架的上、中、下层原来各有书多少本?
五十四、 22、 有铅笔若干支,分给甲、乙、丙三个学生。甲得最多,乙得较少,丙得最少。后重新分配。第一次分配,甲分给乙、丙,各给乙、丙所有数多4支,结果乙得最多; 第二次分配,乙给甲、丙,各给甲、丙所有数多4支,结果丙得最多;第三次分配,丙给甲、乙,各给甲、乙所有数多4支。经三次重新分配后,甲、乙、丙三个学 生各得铅笔44支。最初甲、乙、丙三个学生各得铅笔多少支?
五十五、 23、将八个数从左到右排成一行,从第三个数开始,每个数都恰好等于前两个数之和。如果第7个数和第8个数分别是81,131,那么第一个数是多少?
五十六、 24、一个数减去2487,小明在计算时错把被减数百位和十位上的数交换了,结果得8439,正确的结果是多少?
五十七、 25、一群猴子分一堆桃子,第一个猴子取走了一半零一个,第二个猴子取走剩下的一半零一个,……直到第七个猴子按上述方式取完后恰好取尽。这堆桃子一共有多少个?
五十八、 1、妈妈今年35岁,恰好是女儿年龄的7倍。( )年后,妈妈的年龄恰好是女儿的3倍。
五十九、 2、小明今年8岁,他与爸爸、妈妈的年龄和是81岁,( )年后他们的平均年龄是34岁。这时小明( )岁。
六十、 3、小冬今年12岁,五年前爷爷的年龄是小冬年龄的9倍,爷爷今年( )岁。
六十一、 4、妈妈今年40岁,恰好是小红年龄的4倍,( )年后,妈妈的年龄是小红的2倍。
六十二、 5、一家三口人,三人的年龄和是72岁。妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,妈妈和爸爸都是( )岁,孩子是( )岁。
六十三、 6、 今年,祖父的年龄是小明年龄的6倍,几年后,祖父的年龄将是小明年龄的5倍。又过了几年后,祖父的年龄将是小明年龄的4倍,祖父今年( )岁。
六十四、 7、三年前爸爸的年龄正好是儿子小刚年龄的6倍,今年父子年龄和是55岁,小刚今年( )岁。
六十五、 8、 爸爸15年前的年龄相当于儿子12年后的年龄,当爸爸的年龄是儿子的4倍时,爸爸( )岁。
六十六、 9、甲的年龄数字颠倒过来恰好是乙的年龄,两人年龄和为99岁,甲比乙大9岁,甲的年龄是( )岁。
六十七、 10、祖孙三人的年龄加在一起正好是100岁,祖父过的年数正好等于孙子过的月数,儿子过的星期数正好等于孙子过的天数。祖父( )岁、儿子( )岁、孙子( )岁。
六十八、 11、已知祖父和父亲、父亲和孙子的年龄的差是一样的。又知祖父和孙子的年龄之和为84岁,这个岁数再加上孙子的年龄,正好是100岁,祖父( )岁,父亲( )岁,孙子( )岁。
六十九、 12、小英一家由小英和她的父母组成。小英的父亲比母亲大3岁。今年全家年龄的总和是71岁,8年前这个家庭成员的年龄总和是49岁。今年小英( )岁,父亲( )岁,母亲( )岁。
1、 一篮苹果比一篮桔子重40千克,苹果重量是桔子的5倍,苹果、桔子各有多少千克?
2、 山坡上有一群羊,其中有绵羊和山羊。已知绵羊比山羊的3倍多55只,已知绵羊比山羊多345只,两种羊各有多少只?
3、 育才小学参加科技小组的同学比参加合唱队的4倍少45人,参加科技小组的同学比合唱队的人数多105人,求参加科技小组同学和参加合唱队的人数各有多少人
4、 小芳课外书的本数是小强课外书本数的3倍。如果小芳借给小强10本书,小强书的本数等于小芳的3倍。小芳和小强各有课外书多少本
5、 甲仓库存大米500袋,乙仓库存大米200袋,现从两个仓库里运走同样袋数的大米,结果甲仓库剩下大米正好是乙仓库剩下大米的3倍。问从两个仓库里各运走多少袋大米?
6、 一个车间,女工比男工少35人,男女工各调出17人后,男工人数是女工人数的2倍。原有男工、女工各多少人?
七十、 7、甲、乙两数的差及商都等于6,那么甲、乙两数的和等于多少?
七十一、 8、某车间男工人数是女工人数的2倍,若调走18个男工,那么女工人数是男工人数的两倍,这个车间有女工多少人?
七十二、 9、有两缸金鱼,如果从甲缸中取出5条放入乙缸,两缸内的金鱼数相等。已知原来甲缸的金鱼数是乙缸的1又2/3倍,甲缸原有金鱼多少条?
七十三、 10、两筐重量相等的苹果,甲筐卖出7千克,乙筐卖出19千克以后,甲筐余下的千克数是乙筐的3倍,两筐苹果各有多少千克?
七十四、 11、一天,A、B、C三个钓鱼协会的会员去郊外钓鱼,已知A比B多钓6条,C钓的鱼是A的2倍,比B多钓22条,他们一共钓了多少条鱼?
七十五、 12、某小队队员提一篮苹果和梨子到敬老院去慰问,每次从篮里取出2个梨子、5个苹果送给老人,最后剩下11个苹果,梨子正好分完。这时他们才想起原来苹果数是梨子的3倍。问篮内原有苹果、梨子各多少个?
七十六、 13、已知大小两个数的差是549,将较大数的小数点向左移动一位,就等于较小数。较大的数是多少?较小的数是多少?
七十七、 14、已知两个数的商是4,这两个数的差是39,那么这两个数中较小的一个数是多少?
七十八、 15、甲、乙两数的差是9,甲数的1/6和乙数的1/4相等,甲数是多少?乙数是多少?
七十九、 16、育红小学原来参加室外活动的人数比室内的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内人数的5倍,参加室内、室外活动的共有多少人
八十、 17、四个数依次相差1/80,它们的比是1:3:5:7,求这四个数的和
八十一、 18、小明今年9岁,父亲39岁,再过多少年父亲的年龄正好是小明的2倍?
八十二、 19、有两筐苹果,如果从第一筐拿出9个放到第二筐,两筐苹果个数相等;如果从第二筐拿出12个放到第一筐,则第一筐苹果的个数等于第二筐的2倍。原来每筐各有几个苹果
八十三、 20、某车间男工人数是女工人数的两倍,若调走18个男工,那么女工数是男工人数的两倍。这个车间的女工有多少人?
八十四、 21、大、小两个水池都未注满水,如果从小池抽水将大池注满,则小池还剩水10吨;如果从大池抽水将小池注满,则大池还剩水20吨,已知大池容积是小池的12倍,两池水共有多少吨?
八十五、 1、有三根木料,打算把每根锯成三段,每锯开一处,需用3分钟,全部锯完需要( )分钟。
八十六、 2、有一个挂钟,每小时敲一次钟,几点敲几下,钟敲6下,5秒钟敲完,钟敲12下,( )秒钟敲完。
八十七、 3、某人到十层大楼的第八层办事,不巧停电,电梯停开。如从一层楼走到四层楼需要48秒,请问以同样的速度往上走到八层,还需要( )秒时间才能到达。
八十八、 4、科学家进行一项实验,每隔5小时做一次记录。做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向( )。
八十九、 5、有一条道路,左边每隔5米种一棵杨树,右边每隔6米种一棵柳树,两端都种上树,共有5处杨树与柳树相对。这条道路长( )米。
九十、 6、有一根180厘米长的绳子,从一端开始每3厘米作一记号,每4厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成了( )段。
九十一、 7、在一个正方形池塘的四周种树,四个顶点各种一棵,这样每边都种了15棵,池塘的四周一共种了( )棵树。
九十二、 8、两棵树相隔160米,在期间再等距离地栽上19棵树后,第一棵与第十五棵的距离是( )棵。
九十三、 9、有一排电线杆共61根,每相邻的两根电线杆之间的距离是20米,现在计划除两端2根电线杆外,其余的全部拆除,重新在中间等距离地竖49根。相邻的两根电线杆之间的距离是( )米。
九十四、 10、一条公路长2450米,中间有一条公路横穿,计划在这条公路的两旁各种一行树,棵距是3米,两端都要植1棵树,中间十字路口的两棵树相距50米,一共要植树( )棵。
九十五、 如果1个梨的重量等于2个苹果的重量,1个苹果的重量等于3个桃的重量。问一个梨的重量等于几个桃的重量?
九十六、 如果1个菠萝的重量等于6个苹果的重量,同时又等2根香蕉的重量。问一根香蕉的重量等于几个苹果的重量?
九十七、 如果1个足球相当于2个排球的重量,一个排球相当于20个乒乓球的重量,假设一个乒乓球重8克,那么一个足球重多少克?
九十八、 4、1只猴子等于2只兔子的重量,1只兔子的重量等于3只小鸡的重量。已知每只小鸡重200克。1只猴子重多少克?
九十九、 1只兔子的重量+1只猴子的重量=8只鸡的重量
3只兔子的重量=9只鸡的重量
1只猴子的重量=()只鸡的重量
一百、1只松鼠的重量+1只兔子的重量=5只鸭的重量
2只松鼠的重量=6只鸭的重量
1只兔子的重量=()只鸭的重量
一百零一、用3个鹅蛋可换9个鸡蛋,2个鸡蛋可换4个鸽子蛋,用5个鹅蛋能换多少个鸽子蛋?
一百零二、 4、20只桃子可换2只香瓜,9只香瓜可换3只西瓜,8只西瓜可换多少只桃子?
一百零三、 5、2头小猪可换4只羊,3只羊可换6只兔子,3头猪可换几只兔子?
一百零四、 1个苹果的重量+1个桃子的重量+1个菠萝的重量=630克
1个桃子的重量+1个菠萝的重量+1个梨的重量=730克
1个苹果的重量+1个桃子的重量+1个梨的重量=330克
1个苹果的重量+1个菠萝的重量+1个梨的重量=800克
求这四种水果各多少克?
一百零五、 1只鸡的重量+1只猴的重量=15千克
1只鸭的重量+1只猴的重量=18千克
1只鸡的重量+1只鸭的重量=13千克
求这三种动物各多少千克?
一百零六、 1筐苹果的重量+1筐橘子的重量=90千克
1筐香蕉的重量+1筐橘子的重量=140千克
1筐苹果的重量+1筐香蕉的重量=150千克
求这三种水果各多少千克/
一百零七、 4、红气球的个数+蓝气球的个数+绿气球的个数=35只
白气球的个数+蓝气球的个数+绿气球的个数=43只
红气球的个数+白气球的个数+绿气球的个数=33只
红气球的个数+蓝气球的个数+白气球的个数=48只
求这四种气球各有多少只?


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12699206.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存