十四五,物联网行业将迎来爆发式增长

十四五,物联网行业将迎来爆发式增长,第1张

引言:

近年来,作为前沿技术之一,物联网可谓是赚足了眼球。随着世界各国研究人员对物联网的技术研发日益深入,物联网技术也不断发展成熟,并不断渗透到各个细分行业中。为推动物联网技术深度融入各个领域,我国各有关部门已经出台了一系列政策,其中就包括《面向智慧城市的物联网技术应用指南》等文件。“十四五”规划虽还未全面公开,但是根据中项网行业信息整理分析,物联网行业将在十四五期间迎来大爆发。

物联网概念的由来及发展

物联网(Internet of Things,IoT)一词,最早于1991年由麻省理工的教授提出。在1995年比尔盖茨撰写的《未来之路》一书中也有所提及。1999年,麻省理工学院自动识别中心的Kevin Ashton教授将RFID及传感器应用于日常生活,将物品标记应用,提出“万物皆可通过网络互联”,阐明了物联网的基本含义。根据“物联网“的英文名称:Internet of things(IoT),顾名思义,就是物物相连的互联网,其实它还有一个名称,就是传感网,是指这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网的活点定义是利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。
物联网已广泛应用于各行各业,正不断向“高价晋级“

目前物联网应用已经遍布各个行业,预计将为数十亿日常物品提供连接和智能,而且它已经在各个领域广泛部署,即:可穿戴设备、智能家居、医疗保健、智慧城市、农业、工业自动化等。
未来物联网将会更加广泛的应用于不同行业和领域中,从简单的状态检测和自动化,向高阶的综合调度和智能化决策等方向演进:

物联网行业竞争即将到白热化阶段,技术突破成为行业痛点
目前,在物联网行业,广为人知的主要是华为、阿里等Top10的企业。然后实际上,在物联网领域做的比较好的企业已经有上百家,还有其他大大小小的新进去企业和独角兽公司等,由此可见物联网行业竞争已经到了白热化阶段。物联网作为新一代信息技术的高度集成和综合运用,通过智能传感器、多媒体采集、专网、5G、云计算、大数据等技术,在疫情科学防控、企业复工复产等方面发挥支撑作用,接口融合问题将是物联网行业面临的最大的技术难点和痛点。

“十四五“—物联网真正的爆发期

根据国际调研机构Strategy Analytics发布的《全球联网和物联网设备预测更新》,截至2018年底,全球联网设备数量已经达到220亿。在华为的预测中,到2025年,物联网设备的数量也将接近1000亿个,每小时会有200万个传感器被部署。

根据中项网近五年项目及招投标信息汇总分析,2020年物联网相关项目数量呈直线上升,未来物联网市场上涨空间可观,预计到2025年国内物联网市场规模将突破6万亿,年均复合增长率将达25%。

以内容为中项网行业研究院自创,如有转载请标明出处,多谢!

中项网行业研究院依托中项网的建设项目大数据、行业专家资源和分析研究团队,专注为企业提供行业研究、竞争对手调研、成本研究、渠道研究及业绩监测等服务。

主要优势行业:我们在能源电力、石油化工、轨道交通、环保、新能源、机电设备、工业控制、工业润滑油等领域积累了丰富资源和经验,超过500+的成功案例;

我们的资源:30+名行业研究专家、200+的支持团队、覆盖全行业的项目投资数据及多渠道资源,匠心行业商机及发展研究。

从我在学术平台-百度学术,物联网平台-令容网络,数据分析平台等资料收集整理来分析未来打造智慧城市可以这么做:
1、人工智能技术:制造可学习的指南设备,用于地铁、公交车站等咨询、导航等,实现设备的智能化
2、大数据技术:数据分析、预测,引领大方向的决策;
3、物联网技术:综合上面两者,用物联网技术实现智能监测,可以运用工业、新零售等,提升效率,智能控制、安全升级

物联网架构可分为三层:感知层、网络层和应用层。感知层由各种传感器构成,包括温湿度传感器、二维码标签、RFID标签和读写器、摄像头、红外线、GPS等感知终端。感知层是物联网识别物体、采集信息的来源。网络层由各种网络,包括互联网、广电网、网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。应用层是物联网和用户的接口,它与行业需求结合,实现物联网的智能应用。其核心技术又可以细分为六层,如右图:和传统的互联网相比,物联网有其鲜明的特征。首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。此外,物联网的精神实质是提供不拘泥于任何场合,任何时间的应用场景与用户的自由互动,它依托云服务平台和互通互联的嵌入式处理软件,弱化技术色彩,强化与用户之间的良性互动,更佳的用户体验,更及时的数据采集和分析建议,更自如的工作和生活,是通往智能生活的物理支撑。这里的“物”要满足以下条件才能够被纳入“物联网”的范围:1、要有数据传输通路;2、要有一定的存储功能;3、要有CPU;4、要有 *** 作系统;5、要有专门的应用程序;6、遵循物联网的通信协议;7、在世界网络中有可被识别的唯一编号。物联网概念这几年可谓是炙手可热,物联网家电也是风生水起,从狭义上讲,物联网家电是指应用了物联网技术的家电产品。从广义上讲,是指能够与互联网联接,通过互联网对其进行控制、管理的家电产品,并且家电产品本身与电网、使用者、处置的物品等能够实现物物相联,通过智慧的方式,达成人们追求的低碳、健康、舒适、便捷的生活方式。物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“InternetofThings”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。而RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放性的计算机网络实现信息交换和共享,实现对物品的“透明”管理。物联网的含义从两化融合这个角度分析物联网的涵义:其一:工业化的基础是自动化,自动化领域发展了近百年,理论、实践都已经非常完善了。特别是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂营运而生的DCS控制系统,更是计算机技术,系统控制技术、网络通讯技术和多媒体技术结合的产物。DCS的理念是分散控制,集中管理。虽然自动设备全部联网,并能在控制中心监控信息而通过 *** 作员来集中管理。但 *** 作员的水平决定了整个系统的优化程度。有经验的 *** 作员可以使生产最优,而缺乏经验的 *** 作员只是保证了生产的安全性。是否有法做到分散控制,集中优化管理?需要通过物联网根据所有监控信息,通过分析与优化技术,找到最优的控制方法,是物联网可以带给DCS控制系统的。其二:IT信息发展的前期其信息服务对象主要是人,其主要解决的问题是解决信息孤岛问题。当为人服务的信息孤岛问题解决后,是要在更大范围解决信息孤岛问题。就是要将物与人的信息打通。人获取了信息之后,可以根据信息判断,做出决策,从而触发下一步 *** 作;但由于人存在个体差异,对于同样的信息,不同的人做出的决策是不同的,如何从信息中获得最优的决策?另外物获得了信息是不能做出决策的,如何让物在获得了信息之后具有决策能力?智能分析与优化技术是解决这个问题的一个手段,在获得信息后,依据历史经验以及理论模型,快速做出最优决策。数据的分析与优化技术在两化融合的工业化与信息化方面都有旺盛的需求。物联网智库认为物联网的定义源于IBM的智慧地球方案,十二五规划中九大试点行业全部都是行业的智能化。无论智慧方案,还是智能行业,智能的根本离不开数据分析与优化技术。数据的分析与优化是物联网的关键技术之一,也是未来物联网发挥价值的关键点。物联网就是各行各业的智能化。私有物联网:一般面向单一机构内部提供服务;公有物联网:基于互联网向公众或大型用户群体提供服务;社区物联网:向一个关联的“社区”或机构群体(如一个城市政府下属的各委局:如公安局、交通局、环保局、城管局等)提供服务;混合物联网:是上述的两种或以上的物联网的组合,但后台有统一运维实体;医学物联网:是将物联网技术应用于医疗、健康管理、老年健康照护等领域;建筑物联网:是将物联网技术应用于路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控等领域。

智慧物联网技术应用的研究性学习报告写法如下:
1、先将自己对智慧物联网技术应用的研究背景,进行分析找到自己感兴趣的切入点。
2、确立自己研究智慧物联网技术应用中某一项技术的活动目标。
3、对智慧物联网技术应用中某一项技术进行购买研究,并将研究成果实时记录。
4、总结自己在智慧物联网技术应用中某一项技术研究的成果,以及自己在这项领域中的不足。

物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。

在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;

在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。

一、智能交通

物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;

高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。

社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。

该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。

二、智能家居

智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;

通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;

智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;

智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。

三、公共安全

近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。

美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。

利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。

趋势和特征

物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。

物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。

物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。

环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。

在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。

通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。

可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。

通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。

此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。

未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。

通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。

市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。

以上内容参考 百度百科-物联网


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12719274.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存