物联网有哪些用途?

物联网有哪些用途?,第1张

1 物联网主要应用领域

物联网的应用领域广泛,简单介绍几个应用场景:物流与仓储、健康与医疗、智能环境、社交智能交通、智能建筑、文物保护、古迹的实时监测、智能家居、定位导航、物流管理、视频监控、数字医疗等产业都有广泛的应用。

物联网应用范围

2简单介绍几个应用例子

1)智慧城市

一般利用物联网、人工智能、云边计算、大数据挖掘分析、机器学习和深度学习等技术,还有运用三维可视化大数据平台、物联网云平台、移动终端以及各个智能硬件设备,实现城市物联感知、城市管理、城市服务等功能,提高政府监管服务、决策的智能化水平,形成高效、便捷、便民的新型管理模式,为城市构建智能型,管理型决策平台。

智慧城市下智慧园区

智慧城市主要应用功能包括智能交通系统、智慧能源系统、智慧物流及建筑服务系统、城市指挥中心、智慧医疗、城市公共安全、城市环境管理、政府公共服务平台等八个方面组成。

2)智能农业

智能农业基于物联网技术,通过各种无线传感器实时采集农业生产现场的光照、温度、湿度等参数及农产品生长状况等信息而进行远程监控生产环境。将采集的参数个信息进行数字化和转化后,实时传输网络进行汇总整合,利用农业专家智能系统进行定时、定量、定位云计算处理,及时精确的遥控指定农业设备自动开启或是关闭。

智能农业

3)智能交通

智能交通系统是将先进的电子传感技术、信息技术、数据通信传输技术、控制技术、计算技术以及物联网技术等有效地集成运用于整个交通管理的一个体系,建立起一种能在大范围、全方面发挥作用的,实时、准确、高效的综合交通管理系统。

车联网

3个人经历

我之前是学习机械的,所以物联网相关知识都是自学的。本科毕业工作几年,发现工业物联网行业是未来的风口。就辞职考研了,研究生期间主要研究的是机电一体化与物联网控制。物联网涉及的知识面比较广,除了在工业方面,它是涵盖单片机、传感器、通信技术、云存储技术、数据可视化和数据挖掘等一系列学科。诸如:嵌入式技术、无线传感网络技术、传感器技术、M2M技术、云计算及中间件技术。我也构建一套智能家居系统。

物联网架构可分为三层:感知层、网络层和应用层。
感知层由各种传感器构成,包括温湿度传感器、二维码标签、RFID标签和读写器、摄像头、红外线、GPS等感知终端。感知层是物联网识别物体、采集信息的来源。
网络层由各种网络,包括互联网、广电网、网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递和处理感知层获取的信息。
应用层是物联网和用户的接口,它与行业需求结合,实现物联网的智能应用。
其核心技术又可以细分为六层,如右图: 和传统的互联网相比,物联网有其鲜明的特征。
首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。
其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。
还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。
此外,物联网的精神实质是提供不拘泥于任何场合,任何时间的应用场景与用户的自由互动,它依托云服务平台和互通互联的嵌入式处理软件,弱化技术色彩,强化与用户之间的良性互动,更佳的用户体验,更及时的数据采集和分析建议,更自如的工作和生活,是通往智能生活的物理支撑。 这里的“物”要满足以下条件才能够被纳入“物联网”的范围:
1、要有数据传输通路;
2、要有一定的存储功能;
3、要有CPU;
4、要有 *** 作系统;
5、要有专门的应用程序;
6、遵循物联网的通信协议;
7、在世界网络中有可被识别的唯一编号。
物联网概念这几年可谓是炙手可热,物联网家电也是风生水起,从狭义上讲,物联网家电是指应用了物联网技术的家电产品。从广义上讲,是指能够与互联网联接,通过互联网对其进行控制、管理的家电产品,并且家电产品本身与电网、使用者、处置的物品等能够实现物物相联,通过智慧的方式,达成人们追求的低碳、健康、舒适、便捷的生活方式。 物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“Internet of Things”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。
而RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放性的计算机网络实现信息交换和共享,实现对物品的“透明”管理。物联网的含义
从两化融合这个角度分析物联网的涵义:
其一:工业化的基础是自动化,自动化领域发展了近百年,理论、实践都已经非常完善了。特别是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂营运而生的DCS控制系统,更是计算机技术,系统控制技术、网络通讯技术和多媒体技术结合的产物。DCS的理念是分散控制,集中管理。虽然自动设备全部联网,并能在控制中心监控 信息而通过 *** 作员来集中管理。但 *** 作员的水平决定了整个系统的优化程度。有经验的 *** 作员可以使生产最优,而缺乏经验的 *** 作员只是保证了生产的安全性。是否有办法做到分散控制,集中优化管理?需要通过物联网根据所有监控信息,通过分析与优化技术,找到最优的控制方法,是物联网可以带给DCS控制系统的。
其二:IT信息发展的前期其信息服务对象主要是人,其主要解决的问题是解决信息孤岛问题。当为人服务的信息孤岛问题解决后,是要在更大范围解决信息孤岛问题。就是要将物与人的信息打通。人获取了信息之后,可以根据信息判断,做出决策,从而触发下一步 *** 作;但由于人存在个体差异,对于同样的信息,不同的人做出的决策是不同的,如何从信息中获得最优的决策?另外物获得了信息是不能做出决策的 ,如何让物在获得了信息之后具有决策能力?智能分析与优化技术是解决这个问题的一个手段,在获得信息后,依据历史经验以及理论模型,快速做出最优决策。数据的分析与优化技术在两化融合的工业化与信息化方面都有旺盛的需求。
物联网智库认为物联网的定义源于IBM的智慧地球方案,十二五规划中九大试点行业全部都是行业的智能化。无论智慧方案,还是智能行业,智能的根本离不开数据分析与优化技术。数据的分析与优化是物联网的关键技术之一,也是未来物联网发挥价值的关键点。
物联网就是各行各业的智能化。 私有物联网:一般面向单一机构内部提供服务; 公有物联网:基于互联网向公众或大型用户群体提供服务; 社区物联网:向一个关联的“社区”或机构群体(如一个城市政府下属的各委办局:如公安局、交通局、环保局、城管局等)提供服务; 混合物联网:是上述的两种或以上的物联网的组合,但后台有统一运维实体; 医学物联网:是将物联网技术应用于医疗、健康管理、老年健康照护等领域; 建筑物联网:是将物联网技术应用于路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控等领域。

1IP无法承受之重
你肯定听到过很人多谈论IPv6将如何支持IoT,因为我们将需要更多独特的IP地址,而IPv4地址已经所剩无几。在一定程度上,这可能是真的,但是正如Mesh Dynamicx创始人兼首席技术官Francisda Costa所指出:“数十亿设备不能进行单独管理,它们只能被安置。通过传统手段(例如IPv6)不太可能管理如此庞大数量的通信机器。”在daCosta看来,未来将会出现大量自我组织的本地网络。笔者相信他是对的;这也是可行的。
2IP太大
便宜的日常物品中微型传感器运行完整的IP堆栈并没有意义,所以我们需要开发或扩展小型本地网络协议。本地网络将连接到企业或工业网络,仅在需要时与其余IPv6空间来交互。蓝牙为我们带来极简的网络,但它只能支持多点网络。低功耗无线协议(例如谷歌的Thread,针对智能家具设备的IPv6规范)则是从更传统的方式尝试解决这个问题的早期尝试。我们可能会看到某种版本的最小堆栈无线将会出现并成为主导标准,但即使通过一种规范,IoT设备变得不那么智能,它们构建的网络将会变得更加复杂。如果我们不能保护目前的互联网,未来事情会变得更加复杂。
3这是一场混战,可能会有人受伤
目前,IoT设备连接到智能手机,智能手机会连接到服务器来为其应用程序获取数据。但不同的IoT应用(智能手机、腕带、灯泡、医疗器械等)之间还没有互连。我们开始看到APImashup连接不同智能对象知道的点,但这只是开始。在等到本地非IP网络知道如何以协调的方式来聚合数据后,我们才可能看到进一步的互连,这反过来可能需要我们进行共同开发和部署生态系统。
我们可以把它看成是 *** 作系统战争再次爆发,而这次有更多的移动部件,或者说浏览器战争。在每个战争中,都是通过添加功能来赢得战争,包括没人知道他们需要的功能。当然,更多的功能意味着更多漏洞和IoT安全问题。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12720298.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存