企业决策者都听到过有关物联网的炒作,但很多人不知道物联网如何能对业务带来实际影响。因此,企业在考虑部署物联网设备时,应该先花些时间与实际应用物联网的企业进行沟通,了解他们如何利用物联网。
2: 制定战略
每个企业都有独特的需求,并没有适合所有人的物联网项目。在你试验物联网或提交项目申请书之前,应该与企业关键决策者共同制定战略。这有助于确保用户认同物联网项目,还可以确保物联网项目为企业提供最高价值。
3:先实现较容易的目标
你引进的新技术需要快速的高度可见的成功。如果你的企业IoT战略与其他公司已经有着良好记录的IoT项目一致,应该先专注这些项目,因为这些项目相对容易实现和产生结果。此外,如果有的IoT项目可展示“项目部署之前和之后”的数据对比指标,这可以为新的IoT项目奠定基础。
4: 清理你的数据
物联网设备产生的数据或通过互联网传输的数据可能堵塞网络,IoT项目应该确定你想要的IoT数据,还应该确定你想要清除的IoT数据,你可以自己进行数据清理过程,或者外包给供应商
5: 想想你的客户
最佳IoT项目通常专注于客户的需求。这里很好的例子是市政电车系统,该系统现在使用IoT传感器来预测系统设备和跟踪故障,让维修人员可以主动地解决这些问题。这些IoT系统甚至可以在系统故障时发送消息到客户的手机,建议客户改变路线。
6:不要忘记故障转移
对于依赖于稳定IoT数据流的系统,通常都可能面临机器或互联网故障的威胁,导致数据流停止。如果你在使用IoT数据驱动的自动化工作流,特别重要的是,你的故障转移系统需要可以将这些工作流的控制转移到手动模式。
7: 加强安全防范
如果你使用来自互联网的原始物联网数据,这些数据可能给你带来恶意软件、病毒和其他安全威胁。对于考虑使用互联网IoT数据的企业,应该重新评估其安全做法,以确保本地和广域网的安全。
8: 结合IoT数据与现有数据
最大限度地利用物联网的最佳方式是结合内部系统记录中的数据。例如,如果你在收集你网站客户行为的数据,你可以将这些数据结合已有的客户信息,例如客户住在哪里以及其他关键数据。这让你可以更好地了解每个客户及其购买行为和喜好。
9: 设置基线和指标
你的IoT项目应该可以与过去公司业绩基准进行对比,通过这种方式,你可以很容易地展示物联网项目的成效,这可能是收入提高、更好的客户服务、更快的内部 *** 作完成时间、成本节约等。
10: 定义你的下一代IoT应用程序
当你的IoT项目取得阶段性成功时,你应该开始考虑如何应对更多的IoT应用程序。与参与制定战略的业务决策者商讨这个问题可以帮助你的IoT项目向前推进。
最后,你还要有一个符合项目的域名,用于平台的搭建,市场上域名的选择比较多,有com、cn、top,看实际情况选择
随着汽车数量的增加,停车位相形之下越来越少,尤其市区停车往往一位难求。庆幸的是,智能停车借助各种连接设备与传感器,能够有效帮助使用者减少搜寻停车位的问题。
智能停车导引系统具备多种优点,而降低车流量以及碳排放量则是最重要的一点。Streetline公司营销事业开发部门资深副总Kurt Buecheler引用经济学家Donald Shoup的说法,“每改善10%的塞车问题可促进城市GDP成长2%。我们可以大胆推估,借助提供智能停车系统,将使得与洛杉矶同等级的城市GDP成长达200亿美元。”
Smart Parking Technology欧洲、中东暨非洲区业务经理表示,“智能停车技术能有效降低在大城市中车辆回堵以及碳排放量的问题,让驾驶人不需要持续制造二氧化碳,只为了寻找停车位。”
智能停车技术发展
智能停车导引系统主要包含可侦测停车空位并能将数据传送到后台的传感器,接着转送相关讯息到客户端的App应用程序或是标示系统。目前市场上主要应用的两种传感器为超音波传感器与磁性传感器。超音波传感器通常应用于室内停车场,传输音波频率范围从25∼50KHz,这个频段是人体所无法接收到的声谱。系统控制终端能连接以太网络,并借助有线(RS485)或是无线(频率433 MHz)与传感器相互连接。
至于城市街道停车系统则多半使用埋在地下的充电式磁力传感器。Happiest Minds Technologies物联网中心总经理Manu Tayal表示,“通常传感器的磁性范围会固定在±1200μT。而使用者能依据需求选择,设定每个传感器的输出数据频率在1563Hz到800Hz之间。传感器必须确保工作温度范围在零下40度∼85度之间。”
大华科技停车解决方案经理Jieruo Zhang表示,“磁力传感器通常只采用无线方式与控制终端连接。一般有两种无线连接解决方案,短距离以及NB-IoT(Narrow BandInternet of Things,窄频物联网)等两种。短距离的方案多半采用无线433MHz频率连接邻近的控制端,而控制器则透过手机通讯连接网络。至于NB-IoT方案,每个磁力传感器都能连接至透过手机通讯的NB-IoT网络,可说是大型物联网应用的理想选择”。Nedap Identification Systems停车场无线检测技术产品(SENSIT)项目经理Edwin Siemerink指出,“我们采用一套无线网络解决方案作为SENSIT传感器以及终端控制系统数据传输的桥梁。同时,在无线电网络中也设置了中继节点以及SENSIT网关。”
影像在系统中扮演的角色
传统传感器例如超音波以及磁力等多半用来侦测停车空间是否仍有空位或已经被占用。然而,近年来影像感测已经成为一种可行性高甚至更经济的替代方案。海康威视垂直整合方案营销经理Adler Wu指出,“摄影机能协助辨识可用车位与位置等信息,并实时在停车场地图中显示,用户能借助App找到有空位的停车场、计算出最快的到达路线以指引驾驶人前往停车。”
Zhang也指出,“有些监控业者例如大华科技,正在开发应用于城市道路的影像侦测技术,所有空间侦测摄影机可同时观测多处场所(2∼3个点),有些地下停车场或是停车塔甚至能一次监测6个点左右,可说是一套相当经济又方便的系统架构。”
自动车牌辨识系统(ALPR)
与其他传感器不同,影像还能提供另一个重要功能:车牌辨识(ALPR),能协助执行各种任务例如取缔违规停车等。以Genetec的ALPR系统AutoVu为例,该系统能协助终端用户更有效的监看停放于设施或道路上的车辆。此方案需要将ALPR摄影机安装在用户的车顶上不断运作,或是固定在无栅栏的流动式停车场顶部。在市区街道上,架设ALPR摄影机的汽车也可以协助取缔交通违规事件。
Genetec产品营销经理CharlesPitman说明,“ALPR之所以能达到停车智能化的原因在于能让停车场管理单位更有效率的执行工作。在过去,倘若想要知道这台车子是否取得停车许可,警卫必须要求驾驶出示或确认挡风玻璃上是否有停车许可证,这是一项非常耗时耗力的工作。借助ALPR系统,不需要警卫查看,摄影机就会自行判别来访者是否具有权限进入该区域。”
事实上,ALPR系统不仅能协助简化 *** 作流程,也能让驾驶人更为便利。以大学校园为例,与过往需要排队购买纸本通行证的做法不同,学生现在只需要上网预先登记,在出入停车场的时候ALPR就会自动验证。Pitman表示,“采用ALPR时用户不需要实体证件,而是拿到一份个人的虚拟车牌许可证。使用者仅须上网、支付登记费、输入个人车牌,就完成申请程序。”
数据分析才是系统的实际价值
除了能更简单搜寻外,传感器以及设备所产生的数据能被加以分析,从而协助改善城市中的各项服务、提升居住质量。Jieruo Zhang表示,“在物联网时代,大数据以及网络经济、数据流更显重要。以智能停车而言,如果没有车牌信息,则停车纪录内容将会完全不同。就影像侦测智能停车来看,停车与付款信息至少在三个部分会有很大的差异:第一,系统能引导驾驶如何停车与出场,进而提升停车场的轮转率;第二,能提供客制化停车服务,例如预约停车或VIP据点管理,提升附加价值;第三,借助更稳定的用户数量以及金流,停车App将成为驾驶普遍使用的工具之一,从而吸引其他汽车应用领域,例如洗车行或租车公司等。”Adler Wu也补充,“ALPR/ANPR可以实现车辆出入口自动化的目标,并为停车场业者提供车辆停留时间或特定车辆的收费规范等丰富信息。”
对地方政府而言,智能停车在简化流程上的成果显而易见,然而,智能停车的真正价值在于所收集到的资料,能协助政府制定相关政策以及未来发展蓝图。例如某些区域没有足够的停车空间可以应付过多的车辆,但借助智能停车获取的信息,各县市政府将可以去规划并决定要在哪里设立更多的停车空间及停车位设施,或是在特定区域提高停车费等。
Pitman指出,“现在系统都能够收集到这些数据,而人们也能在取得数据后进行分析、制作报告,从而发现哪些区域停车空间减少,但车辆却比以前更多,政府便可为增加停车空间进行长期的规划与策略。例如当街道上已经没有任何停车的空间时,即需要兴建一座新的立体停车场。”
宏碁商业交易及智能辨识部门资深经理Jay Liu表示,“倘若地方政府希望这个区域有较高的轮转率,例如政府并不希望人们在这里停车超过4至5个小时,便可以提高该区域的停车费率,这就是利用大数据分析得到的结果。你可以发现某些路段在某段时间的占用率较高,便可依此调整费率。”
这最终将使得地方政府收入增加。Streetline市场与企业发展部门资深副总裁Kurt Buecheler指出,“物联网设备是收集停车空间、高速公路时速、出发地/目的地研究以及其他实时与现场信息的关键。倘若市区通行更容易,则人们会更常进出市区,我们的系统已经协助让市区停车场增加172%,营业额也成长11%。公司刚开始进行智能城市的规划,而停车问题是最实际的起点。”
迈向智能化
智能停车毫无疑问将是智能城市的关键之一。物联网传感器与设备正在简化车位导引与付费流程,而透过这些传感器或设备产生的资料,可以让地方政府或是停车场运营商更了解如何改进服务或制定未来相关发展计划。随着世界各地城市逐渐迈向智能化,智能停车势必成为现在与未来的发展趋势!
在磁力传感器中加入红外线技术
有些系统供货商纳入如红外线等技术到磁力传感器之中,以强化传感器的准确性。Nedap Identification Systems公司SENSIT企业经理Edwin Siemerink表示,“我们公司同时采用两种技术,一个是红外线,另一个是磁力侦测,以确保其成为市场上准确率最高的系统。由于磁性侦测会受到其他车辆、电缆、架构、轨道以及地铁缆线等因素影响,这正是我们会搭配红外线技术的主要原因”。
Smart Parking Technology公司欧洲、中东暨非洲区业务经理Jim Short也指出,“由于磁力侦测很容易受到外在环境干扰,例如周围的大型金属对象、各种类型的电器、混凝土或柏油碎石中所包含的磁性物质,甚至是最常见的、存在于周边环境的磁铁。而我们的磁力传感器若侦测到汽车出没的阈值变化时,同时也会利用红外线传感器进行验证。”
ALPR让停车付款更智能
在许多停车场已经可以看到ALPR的实际应用,系统会在车辆入场时撷取车牌信息,而当驾驶出场前到自动缴费机输入车牌号码,即可付款离场。甚至,更方便的系统能在车辆出场之际自动扣款,驾驶人完全不需再去自动缴费机付款。Happiest Minds Technologies物联网中心总经理Manu Tayal表示,“我们提供了一个整合付款网关的手机App给通勤者,通勤者可以储值任何金额到与车牌连结的电子货币包之中,当车辆离开通过网关时即自动扣款。”
ALPR也可以方便地应用于全市的路边停车场。宏碁便提出一个解决方案,运用超音波传感器结合电子广告牌与摄影机,前者用于侦测是否有停车位,一旦有车辆进入停放,摄影机会立即在车辆出入时撷取车牌信息与停车时间。接着,这些信息就会传送到付款系统,直接从驾驶者账户扣款。
发掘科技一家专业的物联网硬件方案公司:发掘科技
基于AT89c51的简易时钟设计摘要:本电子钟是采用电子电路实现对时、分进行数字显示的计时装置,广泛的应用于生活中。电子时钟主要是利用电子技术奖时钟电子化、数字化,拥有时间精确、体积小、界面友好、课扩展性能强等特点,被广泛应用于生活和工作当中。当今市场上的电子时钟品类繁多,外形小巧别致。电子时钟数字化了时间显示。在此基础上,人们可以根据不同场合的要求,在时钟上加置其他功能,
本设计由以下几个部件组成:单片机AT89C51、四个八段码共阴极数码管显示、四个微动按钮等其它组件。在启动后开始从00时00分显示。可以手动校准时间,秒使用两个发光二极管的闪烁来提现,本设计设计简单易于实现。
关键词:AT89C51、倒计时。LED
Simple clock design based on AT89c51
Abstract: This clock is the use of electronic circuits to achieve the hours, minutes, digital display of timing devices, widely used in life Electronic clock main prize is the use of electronic technology electronic clock, digital, with a time accurate, small, friendly interface, expanded its performance and other characteristics, are widely used in life and on the job The market today, many kinds of electronic clock, compact and chic Digital electronic time clock display On this basis, one can according to the requirements of different occasions, plus set the clock on the other features
This design consists of the following components: microcontroller AT89C51, four eight out code common cathode LED display, four buttons, and other micro-components After starting 00 points from 00 shows You can manually calibrate the time, in seconds using two LEDs blink to mention is, the design is simple design easy to implement
Keywords: AT89C51, countdown LED
目 录
摘要 1
关键词 1
Simple clock design based on AT89c51 2
目录 3
第一章引言 4
11 时钟的概述 5
第二章电路工作原理分析 5
21 系统的硬件构成及功能 5
22硬件连接方式 6
第三章: 芯片介绍 6
31 MCS- 51介绍 6
34 LED数码管显示 10
341 LED数码管介绍 10
342 LED数码管编码方式 11
343 LED数码管显示方式和典型应用电路 12
第四章 部分电路介绍 13
41单片机的最小应用系统 13
411 单片机的时钟电路 13
412 复位电路和复位状态 14
413总线结构 17
42此设计显示电路 18
44看门狗电路 19
45 按键模块 19
第五章程序设计 19
第六章 原理图和印制板图的设计 20
( 一 ) 原 理 图 的 设 计 和 网 络 表 的 生 成 20
(二)PCB的制作和设计 21
第七章 原理图的protues仿真 23
71PROTUES介绍 23
72原理图仿真步骤 26
总 结 27
谢 辞 28
参考资料及文献 29
附录一:原理图 30
附录二:PCB 31
附录三 仿真 32
附录四:程序清单 33
第一章引言
数字钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。尽管目前市场上已有现成的数字钟集成电路芯片出售,价格便宜、使用也方便,但鉴于单片机的定时器功能也可以完成数字钟电路的设计,因此进行数字钟的设计是必要的。在这里我们将已学过的比较零散的数字电路的知识有机的、系统的联系起来用于实际,来培养我们的综合分析和设计电路,写程序、调试电路的能力。
单片机具有体积小、功能强可靠性高、价格低廉等一系列优点,不仅已成为工业测控领域普遍采用的智能化控制工具,而且已渗入到人们工作和和生活的各个角落,有力地推动了各行业的技术改造和产品的更新换代,应用前景广阔。
11 时钟的概述
20世纪末,电子技术获得了飞速的发展。在其推动下,电子产品几乎渗透到了社会的各个领域,有力的推动和提高了社会生产力的发展和信息化程度,同时也使现代电子产品性能进一步提升,产品更新换代的节奏也越来越快。
电子钟是采用电子电路实现对时、分、秒进行数字显示的计时装置,广泛的应用于生活中。电子时钟主要是利用电子技术奖时钟电子化、数字化,拥有时间精确、体积小、界面友好、课扩展性能强等特点,被广泛应用于生活和工作当中。当今市场上的电子时钟品类繁多,外形小巧别致。电子时钟数字化了时间显示。在此基础上,人们可以根据不同场合的要求,在时钟上加置其他功能,比如定时闹钟,万年历,环境温度,温度检测,环境空气质量检测,USB扩展功能等。
本设计电子时钟主要功能为:具有时间显示和手动校对功能,24小时制。
本设计任务“
1:用4位LED数码管实时显示时钟计时功能;最小显示时间为00时00分,最大显示时间为23时59分;
2:能方便的校准小时和分钟。
3:了解单片机的基础知识;
4;掌握proteus的基本原理和使用方法;
5:掌握数码管和LED的显示的方法;
6:掌握单片机定时器的基本原理;
7:掌握单片机定时器的基本原理;
8:掌握绘图软件Proell99se的使用方法;
9:绘制程序流程图和编写出程序;
10:画出电路原理图并仿真运行
。
第二章电路工作原理分析
21 系统的硬件构成及功能
本设计由以下几个部件组成:单片机AT89C51、四个八段码共阴极数码管显示、四个微动按钮等其它组件。在启动后开始从00时00分显示。可以手动校准时间,秒使用两个发光二极管的闪烁来提现,本设计设计简单易于实现。
图1 99秒计时器系统原理框图
22硬件连接方式
数码管使用动态显示,P0口作为四个八位共阴数码管的段选输出端,为提高单片机输出能力 P0口作为输出口接了8个47K的电阻作为上拉电阻;P2口是四个八位共阴数码管和两个发光二极管的位选端,显示是事位和分位,四个微动开关做的按键分别连P10,P11,P12,P13完成时和分的加减调整。硬件连接如下:
41单片机的最小应用系统
单片计算机是一个最小的应用系统,但由于应用系统中有一些功能器件无法集成到芯片内部,如晶振、复位电路等,需要在片外加接相应的电路。对于片内无程序存储器的单片机,还应该配置片外程序存储器。
411 单片机的时钟电路
MCS-51单片机内部的振荡电路是一个高增益反相放大器,引线XTAL1和XTAL2分别是放大器的输入端和输出端。单片机内部虽然有振荡电路,但要形成时钟,外部还需附加电路。MCS-51单片机的时钟产生方式有两种。
(1) 内部时钟方式
利用其内部的振荡电路在XTAL1和XTAL2引线上外接定时元件,内部振荡电路便产生自激振荡,用示波器可以观察到XTAL2输出的时钟信号。最常用的是在XTAL1和XTAL2之间连接晶体振荡器与电容构成稳定的自激震荡器,如图3-1所示。
晶体可在12~12MHz之间选择。MCS-51单片机在通常应用情况下,使用振荡频率为6MHz的石英晶体,而12Hz频率的晶体主要是在高速串行通信情况下才使用。C1和C2可在20~100pF之间取值,一般取30pF左右。
(2) 外部时钟方式
在由单片机组成的系统中,为了各单片机之间时钟信号的同步,应当引入惟一的合用外部振荡脉冲作为各单自片机的时钟。外部时钟方式中是把外部振荡信号源直接接入XTAL1或XTAL2。由于HMOS和CHMOS单片机外部时钟进入的引线不同,其外部振荡信号源接入的方式也不同。HMOS型单片机由XTAL2进入,外部振荡信号接至XTAL2,而内部反相放大器的输入端XTAL1应接地,如图3-2所示。由于XTAL2端的逻辑电平不是TTL的,故还要接一上接电阻。CHMOS型单片机由XTAL1进入,外部振荡信号接至XTAL1,而XTAL2可不接地,如图3-3所示。
图3-1内部时钟电路 图3-2HMOS型外部时钟电路 图3-3外部时钟电路
412 复位电路和复位状态
MCS-51单片机的复位是靠外部电路实现的。MCS-51单片机工作后,只要在它的RST引线上加载10ms以上的高电平,单片机就能够有效地复位。
(1) 复位电路
MCS-51单片机通常采用上电自动复位和按键复位两种方式。最简单的复位电路如图3-4所示。上电瞬间,RC电路充电,RST引线端出现正脉冲,只要RST端保持10ms以上的高电平,就能使单片机有效地复位。
图 3-4 简单的复位电路
在实际的应用系统中,为了保证单片机可靠地工作,常采用“看门狗”监视单片机的运行。采用MAX690的复位电路如图3-5所示,该电路具有上电复位和监视MCS-51单片机的P33的输出功能。一旦P33不输出高低电平交替变化的脉冲,MAX690就会自动产生一复位信号使单片机复位。
图3-5 MAX690组成的复位电路
(2) 复位状态
复位电路的作用是使单片机执行复位 *** 作。复位 *** 作主要是把PC初始化为0000H,使单片机从程序存储器的0000H单元开始执行程序。程序存储器的0003H单元即MCS-51单片机的外部中断0的中断处理程序的入口地址。留出的0000H~0002H 3个单元地址,仅能够放置一条转移指令,因此,MCS-51单片机的主程序的第一条指令通常情况下是一条转移指令。
除PC之外,复位还对其他一些特殊功能的寄存器有影响,它们的复位状态如表3-6所示。
由表3-6可知,除SP=07H,P0~P3 4个锁存器均为FFH外,其他所有的寄存器均为0。此外,单片机的复位不影响片内RAM的状态(包括通用寄存器Rn)。
表3-6 寄存器的复位状态
寄存器 复位状态 寄存器 复位状态
PC 0000H TMOD 00H
ACC 00H TCON OOH
PSW 00H TL0 00H
SP 07H TH0 00H
DPTR 0000H TL1 00H
P0~P3 FFH TH1 00H
IP Xxx00000B SCON 00H
IE 0xx00000B PCON 0xx00000B
P0、P1、P2、P3共有4个8位并行I/O口,它们引线为:P00~P07、P10~P17、
P20~P27、P30~P37,共32条引线。这32条引线可以全部用做I/O线,也可将其中部分用做单片机的片外总线。
① 控制线
A、ALE地址锁存允许
当单片机访问外部存储器时,输出信号ALE用于锁存P0口输出的低8位地址A7~A0。ALE的输出频率为时钟振荡频率的1/6。
B、 程序存储器选择
=0,单片机只访问外部程序存储器。对内部无程序存储器的单片机8031, 必须接地。 =1,单片机访问内部程序存储器,若地址超过内部程序存储器的范围,单片机将自动访问外部程序存储器。对内部有程序存储器的单片机, 应接高电平。
C、 片外程序存储器的选通信号。此信号为读外部程序存储器的选通信号。
D、RST复位信号输入
② 电源及时钟
VSS地端接地线,VCC电源端接+5V,XTAL1和XTAL2接晶振或外部振荡信号源。
图3-7 片外3总线结构
413总线结构
单片机的引线除了电源、复位、时钟输入、用户I/O口外,其余引线都是为实现系统扩展则设置的,这些引线构成了单片机外部的3总线形式,如图3-7所示。
① 地址总线
地址总线宽度为16位,由P0口经地址锁存器提供低8位地址(A7~A0),P2口直接提供高8位地址(A15~A8)。
由口的位结构可知,MCS-51单片机在进行外部寻址时,P0口的8根引绠低8位地址和8位数据的复用线。P0口首先将低8位的地址发送出去,然后再传送数据,因此要用锁存器将先送出的低8位地址锁存。MCS-51常用74LS373或8282做地址锁存器。
② 数据总线
数据总线宽度为8位,由P0口提供。
③ 控制总线
MCS-51用于外部扩展的控制总线除了它自身引出的控制线RES、 、ALE、 外,还有由P3口的第二功能引线:外部中断0和外部中断1输入线 和 ,以及外部RAM或I/O端口的读选通和写选通信号 和 。
34 MCS—51单片机的最小应用系统
构成最小应 MCS—51单片机的最小应用系统
用系统时只要将单片机接上外部的晶体或时钟电路和复位电路即可,如图3-8所示,这样构成的最小系统简单可靠,其特点是没有外部扩展,有可供用户选用的大量I/O线。
42此设计显示电路
数码管使用动态显示,P0口作为四个八位共阴数码管的段选输出端,因为P0口作为输出口接了8个47K的电阻作为上拉电阻;P2口四个八位共阴数码管的位选端,显示是两位时间的事时位和两位的分位。
43电源电路
由于该系统需要稳定的5 V电源,因此设计时必须采用能满足电压、电流和稳定性要求的电源。该电源采用三端集成稳压器LM7805。它仅有输人端、输出端及公共端3个引脚,其内部设有过流保护、过热保护及调整管安全保护电路,由于所需外接元件少,使用方便、可靠,因此可作为稳压电源。图4为电源电路连接图。
44看门狗电路
系统中把P16作为看门狗的“喂狗”信号;将MAX813的 RESET与单片机的复位信号RST连接。由于单片机每执行一次程序,就会给看门狗器件一个复位信号,这样也可以用手工方式实现复位。当按键按下时,SW-SPST就会在MAX813 引脚产生一个超过200ms的低电平,其实看门狗器件在16s 时间内没有复位,使7引脚输出一个复位信号的作用是相同的,其连接图如图6所示。
45 按键模块
下图为按键模块电路原理图,S1为时加,s2为时减,S3为分钟加调控键,S4是分钟减调控键。
LED_BIT_1 EQU 30H ; 存放8位数码管的段码
LED_BIT_2 EQU 31H
LED_BIT_3 EQU 32H
LED_BIT_4 EQU 33H
LED_BIT_5 EQU 34H
LED_BIT_6 EQU 35H
LED_BIT_7 EQU 36H
LED_BIT_8 EQU 37H ; 存放初始密码
SECOND EQU 60H
MINUTE EQU 61H
HOUR EQU 62H
TCNT EQU 63H
ORG 00H ;初始化程序 ,设置初始密码
SJMP START
ORG 0BH
LJMP INT_T0
START:
MOV DPTR,#TABLE
MOV HOUR,#0
MOV MINUTE,#0
MOV TCNT,#0
MOV TMOD,#01H
MOV TH0,#03ch ;定时50毫秒
MOV TL0,#03ch
MOV IE,#082H
SETB TR0
MOV LED_BIT_1,#00H ;段码存储区清0
MOV LED_BIT_2,#00H
MOV LED_BIT_3,#00H
MOV LED_BIT_4,#00H
MOV LED_BIT_5,#00H
MOV LED_BIT_6,#00H
MOV LED_BIT_7,#79H
MOV LED_BIT_8,#73H
MOV TMOD,#01H
MOV TH0,#0fdh
MOV TL0,#0fdh
MOV IE,#82H
A1:
LCALL DISPLAY ;调用时间显示
JNB P10,S1
JNB P11,S2
JNB P12,S3
JNB P13,S4
LJMP A1
S1: LCALL DLY_S ;去抖动
JB P10,A1
INC HOUR ;秒值加1
MOV A, HOUR
CJNE A,#24,J00 ;判断是否加到60秒
MOV HOUR,#0
LJMP A1
S2: LCALL DLY_S
JB P11,A1
K01: DEC HOUR ;SHI-
MOV A,HOUR
CJNE A,#0,J01 ;判断是否-0分
MOV HOUR,#24
LJMP A1
S3: LCALL DLY_S
JB P12,A1
K02: INC MINUTE ;小时值加1
MOV A,MINUTE
CJNE A,#60,J02 ;判断是否加到24小时
MOV MINUTE,#0
LJMP A1
S4: LCALL DLY_S
JB P13,A1
K03: DEC MINUTE ;小时值加1
MOV A,MINUTE
CJNE A,#0,J03 ;判断是否加到24小时
MOV MINUTE,#59
LJMP A1
J00: JB P10,A1 ;等待按键抬起
LCALL DISPLAY
SJMP J00
J01: JB P11,A1
LCALL DISPLAY
SJMP J01
J02: JB P12,A1
LCALL DISPLAY
SJMP J02
J03: JB P13,A1
LCALL DISPLAY
SJMP J03
INT_T0: MOV TH0,#3ch ;定时器中断服务程序
MOV TL0,#3ch ;对秒,分钟和小时的计数
INC TCNT
MOV A,TCNT
CJNE A,#20,RETUNE ;计时1秒
INC SECOND
MOV TCNT,#0
MOV A,SECOND
CJNE A,#60,RETUNE
INC MINUTE
MOV SECOND,#0
MOV A,MINUTE
CJNE A,#60,RETUNE
INC HOUR
MOV MINUTE,#0
MOV A,HOUR
CJNE A,#24,RETUNE
MOV HOUR,#0
MOV MINUTE,#0
MOV SECOND,#0
MOV TCNT,#0
RETUNE: RETI
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;DIS3闹铃设置子程序
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;DIS3
DISPLAY: ;显示时间控制子程序
MOV A,SECOND ;显示秒
MOV B,#10
DIV AB
CLR P26
MOVC A,@A+DPTR
MOV P0,A
LCALL DLY_S
SETB P26
MOV A,B
CLR P27
MOVC A,@A+DPTR
MOV P0,A
LCALL DLY_S
SETB P27
CLR P25
MOV P0,#40H ;显示分隔符
LCALL DLY_S
SETB P25
MOV A,MINUTE ;显示分钟
MOV B,#10
DIV AB
CLR P23
MOVC A,@A+DPTR
MOV P0,A
LCALL DLY_S
SETB P23
MOV A,B
CLR P24
MOVC A,@A+DPTR
MOV P0,A
LCALL DLY_S
SETB P24
CLR P22
MOV P0,#40H ;显示分隔符
LCALL DLY_S
SETB P22
MOV A,HOUR ;显示小时
MOV B,#10
DIV AB
CLR P20
MOVC A,@A+DPTR
MOV P0,A
LCALL DLY_S
SETB P20
MOV A,B
CLR P21
MOVC A,@A+DPTR
MOV P0,A
LCALL DLY_S
SETB P21
RET
TABLE: DB 3FH,06H,5BH,4FH,66H
DB 6DH,7DH,07H,7FH,6FH
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;延时
DLY_S: MOV R6,#5 ;延时程序
D1: MOV R7,#100
DJNZ R7,$
DJNZ R6,D1
RET
DLY_L: MOV R5,#50
D2: MOV R6,#100
D3: MOV R7,#100
DJNZ R7,$
DJNZ R6,D3
DJNZ R5,D2
RET
END
第五章程序设计
程序只要完成了初始化,计时,在计时过程中判断按键情况,做相应处理。流程如下。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)