一、内容概述
高光谱遥感地质应用的动力一直来源于矿产地质填图及出于矿产勘查目的而对地表组成信息的获取。其原因通常与热液系统有关。不同类型的蚀变或矿化,往往具有与之相对应的主要光谱吸收特征组合,因而在可见光-短波红外光谱中能够发现诊断性吸收特征,并对相关矿物组合进行填图。
这方面的应用多数采用机载高光谱数据,而AVIRIS和HyMAP是最常用的机载传感器。Kruse(2003)使用Hyperion 航天高光谱数据与 AVIRIS 数据进行了对比,他认为,“星载高光谱传感器可以生成有用的矿物信息,但今后星载传感器必须提高信噪比(SNR),才能达到目前利用机载传感器(如AVIRIS)数据进行填图的相同水平”。有一些研究,包括对比使用高级陆地成像仪(ALI)、ASTER和Hyperion数据进行矿物填图,以及单独使用Hyperion数据进行热液蚀变矿物填图的试验结果,都支持上述观点。近来,Hyperion被用于更新约旦德纳(Dana)国家地质公园的地质图,通过包括微小校正在内的处理过程,生成地层划分产品。
二、应用范围及应用实例
研究最多的系统是热液系统,因为它包含有丰富的具有光谱学活性的矿物组,比如含羟基矿物(热液成因黏土、硫酸盐)、含铵基矿物、层状硅酸盐、铁氧化物和碳酸盐等。经典的研究程度很高的热液系统是美国宇航局喷气推进实验室在内华达州Cuprite矿区的试验场,在那里进行的一些关于光谱学的早期研究为陆地卫星(Landsat)、ASTER及随后的高光谱传感器的研发奠定了基础。关于高光谱遥感的文献,大部分研究的是(低、高硫化)浅成热液金矿系统,主要利用蚀变矿物方法来研究矿化系统的矿产开发前景。一种根据ASTER数据进行区域蚀变填图,随后在局部利用Hyperion数据进行靶区圈定的综合方法,已经在矿产勘查过程中使用。最近,为了开发利用地热资源,还对正在活动的热液系统开展了研究。
对其他类型矿床的研究较少,但大多数常见矿床都已经用高光谱数据做过分析,包括卡林型(利用ASTER进行野外高光谱测量)、太古宙脉状型、矽卡岩型、钙质矽卡岩型和火山成因块状硫化物(VMS)成因矿床等。这些研究侧重地表矿物填图,并将其作为找矿标志。其中一项比较有意思的运用是将光谱学用于VMS型矿床中硫化物矿石的分级。尽管一些关于与迈尔马克(Tschermak)置换有关的吸收特征位置的早期研究表明,云母与绿泥石的化学成分可引起较小的波长偏移,这种偏移与Na-K或Al-Mg的成分变化有关,但填图时很少考虑这个问题。近来这项工作朝着岩石变质级别的评价方向前进了一步,但仍然未说明这些较小的波长偏移现象。有些文献将光谱学与矿物化学综合起来,以重建流体通道;有些研究者则根据碳酸盐吸收特征,对方解石 -白云石矿物组合或白云石化模式进行填图。此外,地球热液系统还被当作火星上的类似物,以增加对后者表面矿物的了解。有些研究者认为火星上有热液系统存在,但都形成于比地球相同地质背景的平均表面温度低许多的情况下。近来的研究在火星上发现了硫酸盐、含水硅酸盐和层状硅酸盐,都支持火星上存在热液作用的观点,但硫酸盐也可能由蒸发过程形成。
有些研究利用高光谱遥感,分别在北极圈、花岗岩地体、蛇绿岩套和橄榄岩(西班牙Ronda橄榄岩)进行岩性填图。
高光谱遥感也经常被用于矿山尾矿的研究。大多数研究侧重于尾矿中能够生成酸的矿物(如黄铁矿),并绘制了氧化产物(黄钾铁矾、水铁矿、针铁矿或赤铁矿)的空间分布图,以揭示环境污染的程度。这些研究主要侧重于地表矿物填图,大多数忽略了环境质量、健康方面的因素,以及地表淋滤过程与元素活动性的联系,还有地下水中的运移过程等。很少有研究将高光谱图件与健康因素结合在一起,唯一的一项研究是对粉尘中的石棉矿物进行填图,这些粉尘可能被风吹起来,并威胁到人类的健康。
高光谱遥感很少被应用到石油与天然气工业。仅有的研究也主要集中在石油与天然气泄漏,以及对油砂填图并估计其中总的沥青含量。
高光谱遥感一项有意义的进展是钻孔岩心成像和围岩成像。第一个公开报道的关于钻孔岩心高光谱成像的研究使用的是野外便携式红外光谱仪(PIMA),可追溯到1996 年。目前有几种钻孔岩心成像设备,可提供钻孔岩心的高光谱扫描数据。尽管这种技术对矿业公司而言,已经变得越来越好用,可确定矿石品位,并将真正的矿石同废矿区分开来,但关于这种技术的科学文献却很少。对这种技术的合理延伸就是陆地高光谱遥感,它可以对围岩或露头进行成像。这也是高光谱遥感的非常有前景的一项应用,因为:它填补了野外逐点测量结果与图像之间的空白;它可以测量用机载设备很不容易成像的垂直剖面。
此外,值得一提的是,高光谱测量技术使得行星地质学在地表成分观察与填图方面取得重要突破。近年来,几项依据CRISM与OMEGA数据的研究已经取得了关于火星的新认识。层状硅酸盐的存在表明,火星表面曾经历过热液作用和/或风化作用。根据可见光-近红外(VNIR)光谱学原理,已经在火星上明确识别出了几种硅酸盐矿物。含铁、镁、铝的蒙脱石(绿脱石、皂石和胶岭石)含量最丰富,其次是少量的高岭石、绿泥石(富铁鲕绿泥石和镁绿泥石)、伊利石或白云母。层状硅酸盐尽管有一部分在早赫斯珀里得斯纪(Hesperian)岩石中被发现,但多数出现在诺亚纪(Noachian)岩石中。已发现的层状硅酸盐沉积物主要以3种不同的形式存在:①成层的硅酸盐沉积;②块状的诺亚纪层硅酸盐沉积;③陨石坑内含层状硅酸盐的沉积扇。对这些沉积物的成因机制,尽管已经提出了像火山灰蚀变、玄武岩风化壳近地表风化、经搬运的分选黏土在水下沉积及热液沉积等多种观点,但至今仍不明确。此外,对硫酸盐、橄榄石或辉石也进行了填图。
三、资料来源
van der Meer F D,van der Werff H M A,van Ruitenbeek F J A et al2012Multi⁃and hyperspectral geologic remote sensing:A reviewInternational Journal of Applied Earth Observation and Geoinformation,14(1):112~128
说白了,物联网就是物物网络,把所有现实中的东西通过传感器编程数据,然后通过收集和控制这些数据来 *** 控现实生活中的各种食物。由检测,传输,数据处理控制来完成一系列的动作。就像人的神经网络接收了外在的感觉然后传输给脑袋来处理一样。物联网最初是想实现在艰苦环境下的数据收集,因为人不能长时间待在恶劣的环境中收集数据,所以希望用电子产品来远程收集这些数据。
1,像海洋环境监测之类的环境监测方面用的比较早。
2,然后就是军事方面较早开始应用来收集战场数据,因为军事的首要目的不是科技效益,而国家的大笔军事资金提供了先行研究应用的可能。美军研究出来的信息尘埃已经应用于实际的战争中了。
3,因为物联网设备并不便宜,有很多硬件上的问题还未解决,所以从技术和成本上来考虑,暂时还很难大规模普及于民用。但是其未来却已经计划出了一些蓝图。
a应用于医疗方面
关于病人各项数据的持续检控在医疗上来说是很重要的环节,如果用人力实现这个将是费时费力的。而用物联网之后,可以由机器来实现,并值班医生护士进行提醒和报警之类的动作,将节省大量人力物力,而且效果将更加好,就像有位24小时陪伴的护士在身边。
b应用于家居方面
智能家居的应用将靠物联网得到更大的发展,哪怕人不在家也可以清楚和 *** 控家里的一切。到时家就像一部智能电脑,可以任你控制。
c应用于各种检测
机械修理需要知道机械故障在哪,往往是先通过个人的判断,然后将机械拆解到一定程度来检测是哪个地方有问题。用物联网中的传感器来检测可以提高检测效率,由计算机来判断是哪有问题。对于这个其实已经实现了。
像建筑物的长期质量监控也需要用到,一旦大楼出现质量问题,物联网可以自动警报,防止悲剧的发生。而汽车,飞机之类的也可以用这些来提高保障。
d网络安全方面的应用。物联网也是网络,它其实是因特网的一种延伸产品,既然是因特网的一部分,那么必然有骇客,有入侵。而物联网将比因特网更加贴近人们生活的实质,所以这方面的网络安全人们将愿意花费更多的金钱去保障。
c电信服务之类
物联网将使手机电话之类的交流手段得到更进一步的提升,有一天物联网将作为网络的一部分称为电信部门的另一种产品,就像电话,短信一样。
物联网的作用实在太广了,将其与个个行业结合都可以产生一种新的产品。而目前最看好的是以上几种。研究物联网一般电子业,计算机和通信专业的学生比较多。我本人就是通信专业的。目前也正在国外留学研究物联网。
这些是我目前对物联网的一些信息,写出来希望对你有帮助。
可见光通过太阳辐射温热环境对家畜有机体热平衡的影响进入动物体。
可见光通信技术:可见光通信技术一种利用LED快速响应特性实现无线高速数据传输的新型绿色信息技术。将数字信号调制到电力线上,通过安装在LED灯内的通信模块,让可见光快速闪烁,以实现信息的传输。这种快速闪烁达到300 Mbit/s。
人眼对这种闪烁是感觉不到的二在接收端通过感光器件接收这种闪烁的灯光,解调出来就是发射端想传输的信息。作为物联网技术之一的可见光通信技术,是在不影响正常照明的前提下,在有照明需求的场合可使照明设备具备“无线路由器”、“通信基站”、“网络接入点”甚至“GPS卫星”的功能。
通过研究发现色光还具有下列特性:
1、互补色按一定的比例混合得到白光。如蓝光和黄光混合得到的是白光。同理,青光和红光混合得到的也是白光。
2、颜色环上任何一种颜色都可以用其相邻两侧的两种单色光,甚至可以从次近邻的两种单色光混合复制出来。如黄光和红光混合得到橙光。较为典型的是红光和绿光混合成为黄光。
3、如果在颜色环上选择三种独立的单色光。就可以按不同的比例混合成日常生活中可能出现的各种色调。这三种单色光称为三基色光。光学中的三基色为红、绿、蓝。这里应注意,颜料的三原色为青,品红,黄。但是,三原色的选择完全是任意的。
4、当太阳光照射某物体时,某频率的光被物体吸取了,则物体显示的颜色(反射光)为该色光的补色。如太阳光照射到物体上,若物体吸取了435 ~400nm的紫光,则物体呈现黄绿色。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)