物联网主要通过什么监控物体或过程

物联网主要通过什么监控物体或过程,第1张

传感器。传感器是物联网的核心组成部分,用于将物理世界中的数据转换为数字信号并将其传输到云端,监控物体和过程的参数。物联网指的是一个基于互联网、传统电信网等的信息承载体,能够让所有能够被独立寻址的普通物理对象形成互联互通的网络。

我们在互联网进化论和互联网神经学的研究过程中,提出“互联网正在向着与人类大脑高度相似的方向进化,它将具备自己的视觉、听觉、触觉、运动神经系统,也会拥有自己的记忆神经系统、中枢神经系统、自主神经系统。另一方面,人脑至少在数万年以前就已经进化出所有的互联网功能,不断发展的互联网将帮助神经学科学家揭开大脑的秘密。科学实验将证明大脑中也经拥有Google一样的搜索引擎,Facebook一样的SNS系统,IPv4一样的地址编码系统,思科一样的路由系统。”
之前也根据这一研究结果所绘制的“互联网虚拟大脑结构图”对互联网与云计算,大数据,物联网,工业40(工业互联网)的关系进行了阐释。
1物联网是互联网大脑的感觉神经系统
因为物联网重点突出了传感器感知的概念,同时它也具备网络线路传输,信息存储和处理,行业应用接口等功能。而且也往往与互联网共用服务器,网络线路和应用接口,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、信息空间和物理世界(人机物)融为一体
2云计算是互联网大脑的中枢神经系统
在互联网虚拟大脑的架构中,,互联网虚拟大脑的中枢神经系统是将互联网的核心硬件层,核心软件层和互联网信息层统一起来为互联网各虚拟神经系统提供支持和服务,从定义上看,云计算与互联网虚拟大脑中枢神经系统的特征非常吻合。在理想状态下,物联网的传感器和互联网的使用者通过网络线路和计算机终端与云计算进行交互,向云计算提供数据,接受云计算提供的服务。
3大数据是互联网智慧和意识产生的基础
随着博客、社交网络、以及云计算、物联网等技术的兴起,互联网上数据信息正以前所未有的速度增长和累积。互联网用户的互动,企业和政府的信息发布,物联网传感器感应的实时信息每时每刻都在产生大量的结构化和非结构化数据,这些数据分散在整个互联网网络体系内,体量极其巨大。这些数据中蕴含了对经济,科技,教育等等领域非常宝贵的信息[52]。这就是互联网大数据兴起的根源和背景。
与此同时,深度学习为代表的机器学习算法在互联网领域的广泛使用,使得互联网大数据开始与人工智能进行更为深入的结合,这其中就包括在大数据和人工智能领域领先的世界级公司,如百度,谷歌,微软等。2011年谷歌开始将“深度学习”运用在自己的大数据处理上,互联网大数据与人工智能的结合为互联网大脑的智慧和意识产生奠定了基础。
4工业40或工业互联网本质上是互联网运动神经系统的萌芽
互联网中枢神经系统也就是云计算中的软件系统控制工业企业的生产设备,家庭的家用设备,办公室的办公设备,通过智能化,3D打印,无线传感等技术使的机械设备成为互联网大脑改造世界的工具。同时这些智能制造和智能设备也源源不断向互联网大脑反馈大数据数,供互联网中枢神经系统决策使用。
5互联网+的核心是互联网进化和扩张,反映互联网从广度、深度融合和介入现实世界的动态过程
互联网+是2015年在中国迅速升温的新互联网概念,这其中离不开国家的倡议,腾讯的大力推动,张晓峰,杜军主编的《互联网+,国家战略行动路线图》等书的深入研究。对于这个原创于本土并被广泛关注的互联网概念,我们应该给与大力支持,更因为互联网+的确深刻刻画了互联网发展形态。
我们无法用上面单独的一张图表示我们对互联网+的理解。这是因为互联网+本质上反映互联网从广度、深度侵蚀现实世界的动态过程。互联网从1969年在大学实验室里诞生,不断扩张,从美国到美洲,从亚洲,欧洲到非洲,南极洲,应用领域从科研,到生活,从娱乐到工作,从传媒到工业制造业。互联网+提出者,易观国际的于扬老师认为互联网像黑洞一样,不断把这个世界吞噬进来。其实互联网+反映了于扬老师的互联网黑洞论进一步提升,+这个符号可以看做是一张黑洞的入口或嘴。这也是为什么我们叫互联网+,而不叫+互联网。

物联网平台为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑设备数据采集上云;向上提供云端API,指令数据通过API调用下发至设备端,实现远程控制。

物联网平台也提供了其他增值能力,如设备管理、规则引擎、数据分析、边缘计算等,为各类IoT场景和行业开发者赋能。

如下是共享单车基于物联网平台的解决方案。
物联网平台提供边缘计算能力,支持在离设备最近的位置构建边缘计算节点处理设备数据。

在断网或弱网情况下,边缘计算可缓存设备数据,网络恢复后,自动将数据同步至云端。

提供多种业务逻辑的开发和运行框架,包括场景联动、函数计算和流式计算,各框架均支持云端开发、动态部署。

边缘计算能力允许在最靠近设备的地方构建边缘计算节点,过滤清洗设备数据,并将处理后的数据上传至云平台。
物联网应用可广泛应用于:智能生活、智能工业、智能楼宇、环境保护、农业水利、能源监控等环境。计算平台主要涉及:

开发者使用设备接入SDK,将非标设备转换成标准物模型,就近接入网关,从而实现设备的管理和控制。

设备连接到网关后,网关可以实现设备数据的采集、流转、存储、分析和上报设备数据至云端,同时网关提供规则引擎、函数计算引擎,方便场景编排和业务扩展。

设备数据上传云端后,可以结合云功能,如大数据、AI学习等,通过标准API接口,实现更多功能和应用。

物联网 (IoT) 设备必须连接互联网。通过连接到互联网,设备就能相互协作,以及与后端服务协同工作。互联网的基础网络协议是 TCP/IP。MQTT(Message Queue Telemetry Transport,消息队列遥测传输) 是基于 TCP/IP 协议栈而构建的,已成为 IoT 通信的标准。

一般来说,工业网关需要具备以下能力:

    1具备对下(自动化系统)协议解析能力(通讯协议:Modbus,PPI,MPI,CNC等;总线协议:CAN,PROFIBUS等;工业无线协议:WirelessHart,433等),目前的网关以通讯协议为主,只有少部分厂家会考虑对下的总线协议以及无线协议,同时传统的总线协议转换也叫工业网关,网关分不清楚。

    2具备对上(IT系统)的协议对接能力,对上的通讯能力(以太网,WIFI,3G,4G,NB-IOT等)

    3具备对上和对下私有协议二次开发能力

    4具备数据缓存,本地计算(雾计算)的能力

    具备这样的能力才可以说是一个完善的网关,另一方面,工业现场应用非常复杂,目前数据接入的成本又非常的高,往往造成业主想要上信息化系统的时候,接入成本就占到1半以上的费用。所以,网关厂家会根据市场大小去布局相应的产品层次。不过,目前不管是国内还是国外的网关厂,都很难覆盖所有的应用,加上网关厂对IT系统的对接协议,以及对接方式并不统一。造成现在接入成本仍然居高不下。大大影响了云和大数据的应用。

 目前市面上的网关类型主要有单向型数据采集型、双向型简单版、双向增强版。

单向型数据采集型

对下具备串口或者网关,对上具备网口或者GPRS。支持协议解析,以moudus为主,对上对下协议可定制,可采用软件按需烧录的形式实现。支持数据缓存,对数据打时间戳。

双向型简单版

对上对下接口更丰富(串口,网口,3G,4G);预置多种通讯协议(PLC,CNC,注塑机,电力);支持二次开发

双向增强版

在简单版上增加对下的无线通讯对接能力和总线型对接能力。

其中第二种是目前需求量最大的,第一种类型和第三种类型目前市场并不明确,在某些行业已经有非常强烈的需求,但是复制性不如第二种,所以目前较少有人开发。 同时第一种和第三种在选择无线通讯协议(对上或者对下)的时候都有一定风险。工业网关的市场直接可以反映我国工业物联网发展水平,如果要看工业物联网在国内的发展,我认为当前阶段看看国内工业网关的发展即可对市场有一定的判断。

简述Inter,物联网,云端计算之间的区别以及联络

因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。

云端计算,物联网,人之智慧技术之间的联络, 人工智慧云端计算物联网三者之间的联络

人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。

日日月月科技云端计算和物联网之间的区别与联络是什么?

云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。

如何认识Inter与物联网、云端计算、三网融合之间的关系

物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。

云端计算大资料物联网之间的区别与联络 2250字左右我写论文

随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。

基于大资料与物联网,云端计算之间的关系

物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。

因特网与物联网,云端计算,三网融合之间的关系

因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。

论述网格计算、云端计算、按需计算之间的联络与区别

云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。

详细阐述大资料,云端计算和物联网三者之前的区别和联络

1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12739548.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存