什么是无线通信模组?
无线通信模组(下面简称模组),也可以叫无线通信模块,简单的来说就是芯片+软件的合体。它是物联网中的通信基础,是不同的物联网终端设备接入物联网的入口,为终端提供网络信息传输能力。
模组的价值何在?
模组的价值主要有两个方面:
集成芯片,整合不同的网络制式(2G/3G/4G/5G/NB), 满足不同的应用场景,提供稳定的硬件通信,简化应用厂商的工作;
定制烧录系统。可以根据应用厂商的需求,定制系统,比如:linux、android、rtms等等,提供软件开发的基础系统。
应用厂商,不需要直接面对芯片和软件,只需要知道,需要接入什么网络,在哪种系统上开发应用,然后直接购买现成的模组或者定制模组。这也是大部分应用厂商真正的使用方式。
模组的现状?
目前模组领域,基本上是一片红海。发展到现在,已经是很成熟的一个产业了。也出现了不少大的公司,国内厂商也很争气,占领了比较大的市场份额,比如:simcom、移远等等。而且,模组中使用的芯片以国内芯片为主,海思、展讯等等,都是应用规模比较大的芯片。
总之,模组是上游芯片,下游应用之间的一座桥梁。在物联网中的话语权还是比较重要的,应用厂商不会直面芯片,而是直接使用模组。所以,在物联网领域,不用担心国产芯片的发展,它一直很强也很好。物联网硬件包括四大模块构成:M2M;两化融合;传感网和RFID,
所需硬件可以从这四个环节分析,比较常见的如传感器、RFID、嵌入式设备以及通信设备等。
M2M是将数据从一台终端传送到另一台终端,也就是就是机器与机器(Machine to Machine)的对话
两化融合是信息化和工业化的高层次的深度结合, 是指以信息化带动工业化、以工业化促进信息化,走新型工业化道路;两化融合的核心就是信息化支撑,追求可持续发展模式
传感网的定义为随机分布的集成有传感器、数据处理单元和通信单元的微小节点,通过自组织的方式构成的无线网络
射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触
无线通信技术:物联网设备可以通过蜂窝网络、Wi-Fi、蓝牙等无线通信技术与移动通信网络进行通信。例如,一个智能家居设备可以通过Wi-Fi连接到家庭路由器,然后通过互联网与用户的手机或平板电脑进行通信。
物联网平台:物联网平台是一个软件系统,用于管理和监控物联网设备,并将设备数据发送到其他系统。移动通信运营商可以提供物联网平台,让物联网设备和移动通信网络进行交互。例如,物联网设备可以将数据发送到移动通信运营商的物联网平台,然后由运营商将数据转发给用户的手机。
应用程序编程接口(API):移动通信运营商可以提供API,使开发人员能够将移动通信网络与物联网设备进行集成。例如,一个智能城市应用程序可以使用移动通信运营商的API获取城市中的交通传感器数据,以便实时更新交通情况。
5G技术:5G技术提供更高的带宽和更低的延迟,可以更好地支持物联网设备和移动通信网络之间的交互。例如,一个自动驾驶汽车可以使用5G技术与移动通信网络进行通信,以便实时获取路况和交通信号数据。
假的,物联网的中间件是一种软件系统,而不是硬件设备。它是指处于物联网系统中,连接设备和应用程序之间的中间层,起着将信息转发、存储、处理和分析的重要作用。物联网的中间件充当着物联网系统的枢纽,对于物联网数据采集、传输、存储、处理、分析等方面发挥着举足轻重的作用,能够使各设备感知和理解环境变化,进行决策和控制,并将数据流和控制信号从各个终端节点搜集,并通过互联网进行交互。
通常,物联网的中间件包括了诸如云计算、大数据分析、消息代理、协议转换、数据缓存、安全管理等多种功能,以便于实现设备、应用程序、网络和平台之间的互 *** 作性和信息交互,并为物联网系统提供支撑。
因此,物联网中间件并不是一种硬件设备,而是一种软件系统,扮演着连接其他物联网组件的重要角色。你好,现在5G只在部门地区测试,预计大范围投入使用在2020年。
7月17日消息,进入下半年以来,我国5G的发展速度可谓是快马加鞭,在最关键的一项用频方面,近日又有了新的利好——工信部为5G新增845GHz频谱资源。截至目前,工信部共计在6GHz以下频段批复了400MHz以及在毫米波频段批复了825GHz频谱资源用于我国5G技术研发试验。
业内人士分析,2018年首个版本的全球5G标准将正式公布,频谱的落地将有助于我国成为全球5G标准主导者,为2020年5G网络正式商用,以及5G产业后续发展奠定基础。
5G 频谱蓝图雏形已现
2015年,ITU正式定义了5G的三类典型应用场景,包括eMBB(增强型移动宽带)、mMTC(大规模物联网)、uRLLC(超高可靠超低时延通信)。为达到上述愿景,5G频率将涵盖高、中、低频段,即统筹考虑全频段:高频段一般指6GHz以上频段,连续大带宽可满足热点区域极高的用户体验速率和系统容量需求,但是其覆盖能力较弱,难以实现全网覆盖,因此需要与6GHz以下的中低频段联合组网,以高频和低频相互补充的方式来解决网络连续覆盖的需求。至于中频段,目前,全球大部分国家和组织对于中频段的具体范围没有确切的定义,但普遍认为3GHz~6GHz为中频段重要资源。
频谱属于不再生资源,移动通信从2G发展到4G,再到5G,可用在移动通信网络的的频谱资源越来越少。全球的国家在5G的用频方面都是慎之又慎。在经历了一番深思熟虑之后,我国开始公布5G用频计划。2016年1月,工信部确定34-36GHz频段用于北京和深圳两地5G技术试验,以验证5G关键技术性能。今年6月,工信部又先后公开就5G低频使用频段征求意见和5G毫米波频段规划征集意见,拟将48-50GHz、2475-275GHz和37-425GHz频段用于5G技术试验。
近日,工信部又批复48-50GHz、2475-275 GHz和37-425GHz频段用于我国5G技术研发试验,试验地点为中国信通院MTNet试验室以及北京怀柔、顺义的5G技术试验外场。
目前,工信部共计在6GHz以下频段批复了400MHz以及在毫米波频段批复了825GHz频谱资源用于我国5G技术研发试验。
值得一提的是,在近日召开的2017年IMT-2020(5G)峰会上,5G项目推进组副主席王晓云透露,根据研究表示,中低频段方面,主要集中在6GHz以下,需求量在808到1078MHz;高频方面,6GHz以上,需求量达到了14到19G。6GHz频段以下,将会成为移动业务的主频段,另外6GHz以上的频段会成为数据量高密度地区的峰值流量承载,如大型运动赛事场所、人流密集的商业中心、中心商务区等等。如果按上述所说,到我国5G频谱制定完成还有一段路要走。
三大运营商公布5G时间表
移动通信是国家关键基础设施,是全球科技创新和国家竞争力的战略必争高地。我国经历了“1G空白、2G跟随、3G突破、4G同步”的发展过程。我国在5G技术起步早,现在又在频谱资源上取得重大突破。目前来看,我国已经进入5G研发试验的第二阶段,并在全国启动了外场试验。
据悉,今年下半年三大运营商将在北京、上海、重庆、广州、南京、苏州等多个城市展开5G试点工作。试点期间,三大运营商除了进行不同规模技术测试、网络验证和基站建设外,还将基于5G网络启动包括自动驾驶、智慧城市、智慧家庭在内的车联网、物联网应用。
事实上,三大运营商早就释放出5G布局的加速的信号。中国移动董事长尚冰日前给出了中国移动最新5G发展进程表:“今年将在5个城市开展外场试验,2019年实现预商用,2020年实现规模商用。”值得一提的是,不久前,中国移动在广州开通了我国第一个5G基站。
在2016年,中国电信挂牌了5G开放实验室,此外申请了5G相关发明专利59项。中国电信表示,希望在2019年建成若干规模预商用网,2020年实现5G商用的目标。
中国联通不久前在深圳开通了其首个外场5G新空口基站。中国联通计划在2018年在5到6个城市进行5G系统组网验证,2019年扩大5G试验的城市数量和基站规模,预计在2020年进行更大规模的面向商用的5G网络部署。
产业链加速成熟
对于在5G产业链上重要的一环,设备厂商由于前期频段的不确定,其设备无法定型,导致研发投入加大。如今随着5G频段的逐步落地,设备厂商看到了曙光。
中兴通讯无线总工程师朱伏生在接受020189cn采访时曾表示,因为频段的不确定,设备厂商们研究的模型不太一样,设备模型也不太一样,研发投入非常大。朱伏生呼吁,国家应该尽快把5G频段确定下来。“在5G领域,以中兴通讯、华为为代表的中国企业已经起到了引领的作用,很多5G关键技术上都有自己的技术点,在推动5G标准制定上也做了大量工作。不能因为一些问题,导致我们的标准技术没有进入全球体系。另外,尽管我们的技术和产业化能力较强,但销往全球也会面临种种壁垒。技术研究只是一个方面,要实现产业化,需要所有人的共同努力。”
5G频谱的落地减少了此类事件的发生,未来,设备厂商可以加足马力,大干快上了。
实际上,随着我国5G进程的加快,越来越多的企业正加入到5G的试验当中。据悉,中国移动研究院、北京移动、大唐电信集团联合组建的5G试验团队日前成立。根据规划,2017年在北京、上海、广州、苏州、宁波5个城市启动5G试验,推动平台架构成熟,验证35GHz组网关键性能。伴随三大运营商5G试点的部署,参与5G试验测试的企业不断增多。据了解,大唐、中兴、诺西、华为等主流系统厂家,以及联芯、展讯等终端芯片企业正积极参与5G试验测试。
众多企业的加入,有助于我国5G的进程的加快,据GSMA移动智库和中国信息通信研究院联合开展的最新研究显示,中国有望在2025年前发展成为全球最大的5G市场。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)