在大型工业系统中,集成是一项越来越大的挑战。过去,工业系统集成主要集中在设备,网络和其他硬件物理层。大多数情况下,软件已配置并包含在特定设备中。
利用工业物联网及其无处不在的网络连接和虚拟化,系统集成挑战现在包括在物理层上运行的软件。
DDS是一种工业物联网连接标准,专门解决工业系统中不断增长的软件集成挑战。例如,DDS用于石油钻井平台自动化平台。这些平台的开发旨在通过集成钻机上的所有子系统并使用软件来驱动钻井过程,从而大大简化钻井过程。
自动化平台需要在控制和流程级别上增加分布式软件。一旦技术人员监控并控制了钻机上的泥浆泵子系统,并与运行其他子系统(如钻头)的其他技术人员协调。使用自动化平台,有一些计算节点运行管理两个子系统的软件应用程序。
这些应用程序需要以安全且可扩展的方式在数十个到数百个软件应用程序之间以高速率共享数据。这就是使用DDS(工业互联网联盟(IIC)建议的核心IIoT连接标准之一)已证明其价值的地方。
OPC UA是工业自动化中用于解决器件集成挑战的另一种IIC核心连接标准。OPC UA简化了需要在制造系统中连接的设备和控制器的配置。它还提供有助于解决应用程序和设备之间语义互 *** 作性的信息模型(如机床的MTConnext)。
未来的过程控制,楼宇自动化,石油钻井平台自动化等工业自动化系统将集成在软件和设备级别。集成DDS和OPC UA以支持这些需求是有意义的。
一种集成方法是基于对象管理组的标准使用OPC UA-DDS网关。DDS扮演核心总线的角色,简化了分布式软件应用程序的集成以及它们之间的数据和服务调用共享。
OPC UA设备和应用程序使用新标准化的OPC UA-DDS网关桥接到DDS数据总线。通过这种方法,可以在软件和设备级别集成具有OPC UA设备和应用程序的软件密集型工业自动化系统。
将来,通过将OPC UA的客户端 、服务器模型和域信息模型与DDS经过验证的发布与技术相结合,可以使用更紧密的集成,将DDS和OPC UA结合在一起。这种方法在DDS和OPC UA之上提供了一个API层,以更好地解决集成挑战。
它将扩展到数千个节点,消除对服务器的依赖,提供灵活的物理层实现并实现细粒度的安全性。
这两种集成方法中哪一种对特定的工业系统有意义取决于用例和整体系统要求。实际上,这两种方法可以根据需要在同一系统中使用。无论如何,将DDS的软件集成强度与OPC UA的设备集成强度相结合是一条充满希望的前进道路。
现在是物联网(IoT)的好时机。当钟声在消费领域响起时,工业领域的众多应用变得普遍,因此是时候开始研究工业物联网(IIoT)了。
IIoT是“ 工业40 ” 概念的基础,开辟了一个新的可能性领域。我们不再谈论为个人用户服务的共同连接设备,我们谈论的是一个连接该部门所有元素的工业连接系统,例如机器,人员,建筑物等,以创建一个全新的范例。
通过这种新的工业范例,不同的连接设备可以批量发送数据到云端,并根据派生的见解将命令返回给其他设备。接收设备能够使用该信息来更有效地 *** 作。因此,我们不只是谈论IIoT而是IIoT生态系统。
在开始转向IIoT空间的众多争论中,我将根据其业务相关性强调以下内容:
警告:IIoT必须安全
尽管有这些原因,你可能仍然不愿意进入 IIoT市场,因为它可能对隐私和安全产生影响。当然,您部署的任何IIoT解决方案或项目都必须以安全为核心。你必须确保技术提供商保证数据的安全性,并为你提供必要的安全层(例如通过区块链Blockchain,等等。),以确保您的业务的完整性。
简而言之,为了使公司长期可持续并提高效率,依靠IIoT是最佳选择。当它与其他技术(如人工智能或机器学习)携手合作时,公司可以进行数字化和创新,以便在市场中生存并更好地竞争。
如今,超过250亿台“物体”连接到互联网上,预计到2025年,这个数字将翻一番。工业物联网(IIoT)以一种爆炸式的方式迅速发展。工业物联网(IIoT)设备、标准和通信协议的激增,使得对IIoT的有效管理变得非常具有挑战性。
如何定义工业物联网 (IIoT) 平台?
工业物联网平台 是一种工业物联网软件,它使组织能够安全地管理工业物联网生态系统中所有连接的人、系统和对象。
在界定工业物联网平台时,我们应该认识到,物联网已经创造了一个新的整合水平。随着成千上万的工业物联网设备接入网络,企业需要管理比以往更多的端点。然而,这不是一个简单的设备问题,工业物联网实际上是一个由人、系统和对象组成的数字生态系统。这就需要一个工业物联网平台来安全有效地管理生态系统的每一个元素。
工业物联网平台有哪些不同类型?
虽然工业物联网平台研发的初衷是对工业物联网的设备和数据进行管理和控制,但为了适应不同的用例,已经开发了许多不同类型的平台。事实上,工业物联网平台很难分类,反而工业物联网平台供应商正在改进其平台产品,以满足客户需求和特定的业务需求。
工业物联网平台将提供不同的功能组合,包括工业物联网的端点管理和连接、物联网数据的采集、接收和处理、数据的可视化和分析,以及将物联网数据集成到业务流程和工作流中。在比较不同类型的平台时,应根据组织的业务需求和特定的IT基础设施,并将其与工业物联网的解决方案相匹配。
工业物联网平台应该具备哪些特点?
因此,最好的工业物联网平台因组织而异,单个平台功能集无法为每个用例提供足够的解决方案。但是,任何一个工业物联网平台都应该具备以下特点:
安全
安全性是工业物联网平台的核心,它不仅可以保护所有物联网端点免受外部网络攻击,还可以处理来自组织内部的潜在恶意活动。
连接性
每一个工业物联网设备都必须快速、安全地进行配置,并对其生命周期的所有阶段进行管理,包括在设备配置、注册、激活、挂起、未挂起、删除和按需重置时对其进行跟踪和授权。
集成
集成是工业物联网面临的最大挑战之一。工业物联网平台允许物联网设备与不同的企业应用、云服务、移动应用和传统系统无缝、安全地连接和共享信息。
识别
工业物联网平台可以支持最广泛的物联网设备。无论在工业物联网架构中的任何地方,都能自动感知物联网设备的存在,建立安全连接,并能快速建立设备凭据,或在需要时自动分配。
分析
物联网设备大大增加了组织中的数据量。分析工业物联网应该是工业物联网平台最强大的功能之一。它可以对工业物联网数据进行适当的可视化和分析,为改进数据驱动的决策提供实际的见解。
管理多个工业物联网传感器很简单,但如今,企业拥有数十万台工业物联网设备来执行遍及组织内部的众多任务。工业物联网设备有多种形状和尺寸,没有通用的工业物联网标准或连接方式。管理一个工业物联网网络意味着能够监控一系列异构的工业物联网设备。
如今,工业物联网(IIoT)平台为工业物联网在几乎所有行业的快速发展提供了解决方案。工业物联网平台能够将设备和企业应用软件完美融合,使数据在互联的人、系统和对象之间无缝、安全地流动。●传感器技术:价格低廉、性能良好的传感器是物联网应用的基石,物联网的发展要求更准确、更智能、更高效以及兼容性更强的传感器技术。智能数据采集技术是传感器技术发展的一个新方向。信息的泛在化对传感器和传感装置提出了更高的要求。具体如,微型化:元器件的微小型化,要求节约资源与能源;智能化:具备自校准、自诊断、自学习、自决策、自适应和自组织等人工智能技术;低功耗与能量获取技术:供电方式为电池、阳光、风、温度、振动等多种方式。\x0d\●设备兼容技术:大部分情况下,企业会基于现有的工业系统建造工业物联网,如何实现工业物联网中所用的传感器能够与原有设备已应用的传感器相兼容是工业物联网推广所面临的问题之一。传感器的兼容主要指数据格式的兼容与通信协议的兼容,兼容关键是标准的统一。目前,工业现场总线网络中普遍采用的如Profibus、Modus协议,已经较好地解决了兼容性问题,大多数工业设备生产厂商基于这些协议开发了各类传感器、控制器等。近年来,随着工业无线传感器网络应用日渐普遍,当前工业无线的WirelessHART、ISA100.11a以及wIA—PA3大标准均兼容了IEEE802.15.4无线网络协议,并提供了隧道传输机制兼容现有的通信协议,丰富了工业物联网系统的组成与功能。\x0d\●网络技术:网络是构成工业物联网的核心之一,数据在系统不同的层次之间通过网络进行传输。网络分为有线网络与无线网络,有线网络一般应用于数据处理中心的集群服务器、工厂内部的局域网以及部分现场总线控制网络中,能提供高速率高带宽的数据传输通道。工业无线传感器网络则是一种新兴的利用无线技术进行传感器组网以及数据传输的技术,无线网络技术的应用可以使得工业传感器的布线成本大大降低,有利于传感器功能的扩展,因此吸引了国内外众多企业和科研机构的关注。\x0d\传统的有线网络技术较为成熟,在众多场合已得到了应用验证。然而,当无线网络技术应用于工业环境时,会面临如下问题:工业现场强电磁干扰、开放的无线环境让工业机器更容易受到攻击威胁、部分控制数据需要实时传输。相对于有线网络,工业无线传感器网络技术则正处在发展阶段,它解决了传统的无线网络技术应用于工业现场环境时的不足,提供了高可靠性、高实时性以及高安全性,主要技术包括:自适应跳频、确实性通信资源调度、无线路由、低开销高精度时间同步、网络分层数据加密、网络异常监视与报警以及设备入网鉴权等。\x0d\●信息处理技术:工业信息出现爆炸式增长,工业生产过程中产生的大量数据对于工业物联网来说是一个挑战,如何有效处理、分析、记录这些数据,提炼出对工业生产有指导性建议的结果,是工业物联网的核心所在,也是难点所在。\x0d\当前业界大数据处理技术有很多,如SAP的BW系统在一定程度上解决了大数据给企业生产运营带来的问题。数据融合和数据挖掘技术的发展也使海量信息处理变得更为智能、高效。工业物联网泛在感知的特点使得人也成为了被感知的对象,通过对环境数据的分析以及用户行为的建模,可以实现生产设计、制造、管理过程中的人一人、人一机和机一机之间的行为、环境和状态感知,更加真实地反映出工业生产过程中的细节变化,以便得出更准确的分析结果。\x0d\●安全技术:工业物联网安全主要涉及数据采集安全、网络传输安全等过程,信息安全对于企业运营起到关键作用,例如在冶金、煤炭、石油等行业采集数据需要长时问的连续运行,如何保证在数据采集以及传输过程中信息的准确无误是工业物联网应用于实际生产的前提。物联网(The Internet of Things,简称IOT)是指通过 各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通[2] 。
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理[5] 。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:
(1)获取信息的功能。主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。(2)传送信息的功能。主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。(3)处理信息的功能。是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。(4)施效信息的功能。指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态
希望我能帮助你解疑释惑。但对于工业物联网而言,要面临诸多难题:
难题一:面对这么多不同类型、不同型号的设备不同的生产制造厂、不同的设计
不同的物理接口、不同的协议
难题二:对接任务繁重,谁来完成?不同的设备完全不一样。同一个设备不同的厂家完全不一样。同一个厂家同一种设备不同型号不一样。同一个厂家同一个型号不同批次还有可能不一样。
难题三:设备的数据很零散。就像一堆面粉。把数据取出来就这样保存到云端平台。
平台上就是一堆更大的面粉。
工业40是基于工业发展的不同阶段作出的划分。按照目前的共识,工业10是蒸汽机时代,工业20是电气化时代,工业30是信息化时代,工业40则是利用信息化技术促进产业变革的时代,也就是智能化时代。需要用到的核心技术:
1、信息物理系统(CPS) CPS形式网络通过(无线)传感和驱动,能够应对不断变化的环境,甚至预测物理系统过程的变化。
2、云计算:云计算让储存在本地的应用程序或者服务连接到物联网变得可能。
3、大数据分析:大数据是指大到那些典型的数据库软件工具无法收集、储存、管理和分析的数据集。大数据分析方法让工业智能化变得可能,比如说机器学习。
4、(IT)系统安全:数据、数据的传播以及所有其它工业系统、机器设备和原件都需要被充分保护,免于遭受网络攻击。
5、增材制造/3D打印:增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术,相对于传统的材料去除-切削加工技术,是一种“自下而上”的制造方法。
6、增强现实(AR):使用增强现实眼镜的工人可以通过远程接受指令来正确装配零件或者协助调试。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)