物联网是物物相连的互联网。
物联网通过各种信息传感器、射频识别技术、全球定位系统、红外感应器等技术和装置实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
物联网把实物联入网络,最终实现物品与物品之间、人与物品之间的全面的信息交互。物与物的连接指向了智能化与自动化,计算机采集数据进行计算,并控制各种物品自动解决问题。
扩展资料:
物联网的应用:
1、智能交通。物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力。
2、智能家居。智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温。
3、公共安全。近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,网可以实时监测环境的不安全性,情况提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
参考资料来源:百度百科-物联网
物联网主要功能是将用户端的所有需要的信息互通互联,实现全方位的远程识别、读取和 *** 控、互动。
应用层位于物联网三层结构中的最顶层,其功能为“处理”,即通过云计算平台进行信息处理。应用层与最低端的感知层一起,是物联网的显著特征和核心所在,应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界的实时控制、精确管理和科学决策。
从结构上划分,物联网应用层包括以下三个部分:
1. 物联网中间件:物联网中间件是一种独立的系统软件或服务程序,中间件将各种可以公用的能力进行统一封装,提供给物联网应用使用;
2. 物联网应用:物联网应用就是用户直接使用的各种应用,如智能 *** 控、安防、电力抄表、远程医疗、智能农业等等;
3. 云计算:云计算可以助力物联网海量数据的存储和分析。依据云计算的服务类型可以将云分为:基础架构即服务(IaaS)、平台即服务(PaaS)、服务和软件即服务(SaaS)。
从物联网三层结构的发展来看,网络层已经非常成熟,感知层的发展也非常迅速,而应用层不管是从受到的重视程度还是实现的技术成果上,以前都落后于其他两个层面。但因为应用层可以为用户提供具体服务,是与我们最紧密相关的,因此应用层的未来发展潜力很大。
物联网就是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。用一句话简单解释一下吧。
云计算: 在服务器端进行运算处理,将运算结果反映到瘦客户端的处理方式,都可以叫云计算。
物联网: 就是通过网络对设备进行管理(监视,控制等),局域网或互联网都可以。云计算与大数据概述
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算与大数据的关系
简单来说:云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。虽然从这个解释来看也不是完全贴切,但是却可以帮助对这两个名字不太明白的人很快理解其区别。当然,如果解释更形象一点的话,云计算相当于我们的计算机和 *** 作系统,将大量的硬件资源虚拟化后在进行分配使用。
可以说,大数据相当于海量数据的“数据库”,通观大数据领域的发展我们也可以看出,当前的大数据发展一直在向着近似于传统数据库体验的方向发展,一句话就是,传统数据库给大数据的发展提供了足够大的空间。
大数据的总体架构包括三层:数据存储,数据处理和数据分析。数据先要通过存储层存储下来,然后根据数据需求和目标来建立相应的数据模型和数据分析指标体系对数据进行分析产生价值。
而中间的时效性又通过中间数据处理层提供的强大的并行计算和分布式计算能力来完成。三者相互配合,这让大数据产生最终价值。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极 *** 作PB级别的数据”,确实让人兴奋不能止。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)