5G什么时候能普及?

5G什么时候能普及?,第1张

1、物联网的定义:

物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。

2、物联网的组成:

物联网大致可以分为以下四个层面,即:感知层、网络层、平台层以及应用层。具体如下:

(1)、感知识别层。

感知层是物联网整体架构的基础,是物理世界和信息世界融合的重要一环。在感知层,我们可以通过传感器感知物体本身以及周围的信息,让物体也具备了“开口说话,发布信息”的能力,比如声音传感器、压力传感器、光强传感器等。感知层负责为物联网采集和获取信息。

(2)、网络构建层。

网络层在整个物联网架构中起到承上启下的作用,它负责向上层传输感知信息和向下层传输命令。网络层把感知层采集而来的信息传输给物联云平台,也负责把物联云平台下达的指令传输给应用层,具有纽带作用。网络层主要是通过物联网、互联网以及移动通信网络等传输海量信息。

(3)、平台管理层。

平台层是物联网整体架构的核心,它主要解决数据如何存储、如何检索、如何使用以及数据安全与隐私保护等问题。平台管理层负责把感知层收集到的信息通过大数据、云计算等技术进行有效地整合和利用,为人们应用到具体领域提供科学有效的指导。

(4)、综合应用层。

物联网最终是要应用到各个行业中去,物体传输的信息在物联云平台处理后,挖掘出来的有价值的信息会被应用到实际生活和工作中,比如智慧物流、智慧医疗、食品安全、智慧园区等。

扩展资料:

物联网的功能主要有以下几点:

1、获取信息的功能。

信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。

2、传送信息的功能。

传送信息指的是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。

3、处理信息的功能。

处理信息指的是信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。

4、施效信息的功能。

施效信息指的是信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态。

参考资料来源:百度百科-物联网

物联网卡是三大运营商提供的满足智能硬件联网需求和物联网行业对设备联网的管理需求的流量卡。目前,中国的物联网正在从硬件设备(如硬件、传感)升级到软件平台和垂直行业应用。

物联网卡看上去和普通SIM卡区别不大,不过和普通的SIM卡相比物联网卡具备以下几个明显优势:

1、成本。物联网卡不能打电话,只具备短信和上网功能,一般是用于智能硬件的连接,所以和SIM卡相比物联网卡的资费更加便宜。

2、号段。万物互联,企业的智能硬件、设施设备动辄成千上万,数量级非常大,SIM卡的11位号码无法满足,而物联网卡是13位号码,采用独立网元,能够更加快速的实现物物相连。

3、管理。在物联网平台购买物联网卡之后可以享受平台提供的其他服务,比如在北京易通物联云平台购买物联网卡之后,北京易通会提供物联网卡的接入、管理、运营和数据服务。

扩展资料:


物联网卡受欢迎的主要原因有以下几个方面:

1、发展趋势。物联网的发展是大势所趋,在刚结束不久的世界互联网大会上,互联网巨头们纷纷表示“互联网时代即将过去,物联网时代即将到来”,而且各大巨头在近期都加大了对物联网行业的投入,比如阿里巴巴就成立了达摩院专门进行物联网方面的研发。

2、应用范围。物联网卡的应用范围越来越广,可以应用的领域越来越多,车联网、智能家居、智慧城市、智能穿戴以及我们所熟知的共享单车,这些都需要物联网卡做支撑。物联网的本质是各种设备之间的连接,而物联网卡则是实现万物互联的桥梁,其重要性可想而知。

3、三大运营商。中国移动、中国联通和中国电信三大运营商对于物联网的发展都比较重视,都在快速布局物联网,加大对物联网的投入,2017年8月三大运营商就分别获得了新的物联网卡号段,加速在物联网方面的推动进程。

参考资料来源:凤凰网-物联网卡为何如此受到人们的欢迎?

5G产业主要上市公司:中国电信(00728)、中国联通(600050)、中国移动(00941)等

本文核心数据:5G产业链各环节投资占比、移动通信固定资产投资规模、移动通信网络设备(主设备)投资规模、移动电话基站天线投资规模、移动通信网络规划运维投资规模等

5G产业链环节较多,主要包含通信网络设备、基站天线、射频、光模块等

5G产业链条非常之广,含零部件、主设备、运营商和下游应用等环节。前期投入主要包括无线设备、传输设备、基站设备、小基站、光通信设备、网络规划实施等。从应用方向上看,5G应用包括产业数字化、智慧化生活、数字化治理三大方向;5G通用应用(即未来可能应用于各行业各种5G场景的应用)包括4K/8K超高清视频、VR/AR、无人机/车/船、机器人四大类;5G应用到工业、医疗、教育、安防等领域,还将产生X类创新型行业应用。

据前瞻产业研究院预计,5G时期5G产业链各个环节的投资占比不同,其中通信网络设备占比最大,为359%,基站天线、射频、光纤光缆和光模块的投资占比分别为35%、123%、33%、53%。

5G产业链总投资有望超过18万亿,投资高峰出现在2023年和2024年

我国5G的推进节奏处于全球最领先水平,与国外移动电话生命周期保持一致。同时由于5G应用场景的多样化(增强移动宽带、海量连接、高可靠低时延等应用场景)及各产业进度的不同,使得5G的投资会是一个相对长期的过程,5G主建设周期将持续5-6年。

在总投资方面,前瞻产业研究院预计我国四大运营商(中国移动、中国电信、中国联通与中国广电)与中国铁塔5G总投资有望超过18万亿,相较于4G时代增长超过60%。从投资节奏来看,投资高峰出现在2023年和2024年;由于行业技术、产品功能的持续升级,应用场景的增长,2024年以后投资规模仍然维持在较高水平。

通信网络设备占产业链投资比重最大,基站天线和网络规划运维投资规模将分别超过600亿元和1400亿元

通信网络设备是移动电话系统的核心环节,主要包括无线、传输、核心网及业务承载支撑等系统设备。依据运营商测算,在4G系统中通信网络设备的投资超过了4000亿元,由于承载业务和支撑的基站数较4G有明显的增加,前瞻产业研究院预计5G时期主设备整体投资将增长45%,预计5G时期通信网络设备(主设备)投资总规模占5G总投资的比重达到359%,投资总额将接近6500亿元。

通信网络设备作为5G投资的核心环节,投资周期较长,预计5G时期均会有较大规模的投资;2023年,随着宏站和小站建设数量双双放量提升,预计通信网络设备(主设备)投资规模迎来峰值,达到968亿元。

参考信息:2021年7月18日,中国移动公布了总价超380亿元的5G 700M无线网主设备集中采购中标公告,集采规模共约480万站。2021年8月1日,中国电信和中国联通公布了2021年5G SA建设工程无线主设备(21G)联合集中采购项目结果,集采规模共约242万站,并设置最高投标限价为20532亿元(不含税)。

根据前瞻产业研究院结合公开资料研究对5G基站数量的统计与测算,预计5G宏站和5G小站数量预计分别为480万站和960万站。对基站天线投资规模测算如下:每个5G宏站需要配置3副天线,每副宏站天线价格以3000元计算;每个小站平均需要配置2副天线,每副小站天线价格以1000元计算,则5G基站天线总投资规模达到624亿元。前瞻产业研究院预计2023年,我国5G基站天线投资总规模达到峰值,为111亿元。

注:2020年、2021年数据包含4G宏基站天线规模,每个4G宏基站只需配置1副天线。

参考信息:2021年6月25日,受中国广电委托,中国移动启动了多频段(含700M)天线产品招标。招标公告显示,招标共涉及三类合计6款的天线集采产品:标包1主要为“4+4+4” 700/900/1800独立电调天线(高增益),需求为60万面;标包2主要为“4+4+4+8”700/900/1800/FA独立电调智能天线(短款),需求为114万面。

尽管5G网络架构比4G要复杂得多,基站总数增多,业务复杂度也随之提高,但集中化、智能化趋势明显。因此5G时代的网络规划和运维成本可能不会有大幅提升,预计与4G时代基本持平。4G时期网络规划运维投资规模约为1342亿元,以增长11%左右测算,5G时期网络规划运维投资规模为1500亿元左右。

网络规划运维在5G建网的早期和建网完成后将受益,前期为网络规划阶段,投资窗口为2020-2023年;后期为网络运维阶段,投资窗口为2024-2027年。

随着物联网的逐渐铺开,人们已经在生活中看到了越来越多的物联网模块:智能水表,共享单车,等等。目前的物联网仍然主要由运营商推动,物联网模块需要使用标准蜂窝协议与基站通讯。由于基站需要覆盖尽可能大的面积,因此物联网模块需要能做到在距离基站很远时仍能通讯,这就对于物联网模块的射频发射功率有了很高的要求;从另一个角度来说,物联网模块在做无线通讯时仍然需要消耗高达30mA的电流,这使得目前的物联网模组仍然需要配合较高容量的电池(如五号电池)才能工作,这也导致了物联网模组的尺寸很难做小。

为了能进一步普及物联网,必须克服这个功耗以及尺寸的限制。例如,如果未来要把物联网做到植入人体内,则不可能再搭配五号电池,而必须使用更小的电池甚至使用能量获取系统从环境中获取能量彻底摆脱电池的限制。为了实现这个目标,从通讯协议上说,可以使用更低功耗的自组网技术,类似BLE;而从电路实现上,则必须使用创新电路来降低功耗。

能量获取技术

根据之前的讨论,目前电池的尺寸和成本都已经成为了限制IoT设备近一步进入潜在市场的瓶颈。那么,有没有可能使用从环境中获得能量来支持物联网节点工作呢这种从环境中获取能量来支持物联网节点工作的模块叫做“能量获取”(energy harvesting),目前能量获取电路芯片的研究已经成为了研究领域的热门方向。

目前最成熟的能量获取系统可以说是太阳能电池。传统太阳能电池能提供较好的能量获取效率,但是付出的代价是难以集成到CMOS芯片上。最近,不少研究机构都在使用新型CMOS太阳能电池,从而可以和物联网节点的其他模块集成到同一块芯片上,大大增加了集成度并减小模组尺寸。当然,集成在CMOS芯片上的太阳能电池需要付出低能量输出的代价,目前常见的CMOS片上太阳能电池在室内灯光下能提供nW等级的功率输出,而在强光下能提供uW级别的功率输出,这就对物联网模组的整体功耗优化提出了很高的要求。另一方面,也可以将能量获取与小尺寸微型电池配合使用,当光照较好时使用太阳能电池而在光照较弱时使用备用电池,从而提升整体物联网模组的电池寿命。

除了太阳能电池外,另一个广为人知的环境能量就是WiFi信号。今年ISSCC上,来自俄勒冈州立大学的研究组发表了从环境中的WiFi信号获取能量的芯片。先来点背景知识:WiFi的最大发射功率是30dBm(即1W),在简单的环境里(即没有遮挡等)信号功率随着与发射设备的距离平方衰减,在距离3m左右的距离信号功率就衰减到了1uW(-30dBm)左右,而如果有物体遮挡则会导致功率更小。俄勒冈州立大学发表的论文中,芯片配合直径为15cm的天线可以在非常低的无线信号功率(-33dBm即500nW)下也能工作给电池充电,能量获取效率在5-10%左右(即在距离发射源3m的情况下输出功率在50nW左右)。因此,WiFi信号也可以用来给物联网模组提供能量,但是其输出功率在现实的距离上也不大,同样也需要节点模组对于功耗做深度优化。

另外,机械能也可以作为物联网节点的能量获取来源。压电效应可以把机械能转换为电能,从而使用压电材料(例如压电MEMS)就能为物联网节点充电。使用压电材料做能量源的典型应用包括各种智能城市和工业应用,例如当有车压过减速带的时候,减速带下的物联网传感器上的压电材料可以利用车辆压力的机械能给传感器充电并唤醒传感器,从而实现车辆数量统计等。这样,机械压力即可以作为需要测量的信号,其本身又可以作为能量源,所以在没有信号的时候就无需浪费能量了!压电材料的输出功率随着机械能的大小不同会有很大的区别,一般在nW-mW的数量级范围。

唤醒式无线系统

传统的IoT无线收发系统使用的往往是周期性通讯或主动事件驱动通讯的方案。周期性通讯指的是IoT节点定期打开与中心节点通讯,并在其他时间休眠;事件驱动通讯则是指IoT节点仅仅在传感器监测到特定事件时才与中心节点通讯,而其它时候都休眠。

在这两种模式中,都需要IoT节点主动与中心节点建立连接并通讯。然而,这个建立连接的过程是非常消耗能量的。因此,唤醒式无线系统的概念就应运而生。

什么是唤醒式无线系统就是该该系统在大多数时候都是休眠的,仅仅当主节点发射特定信号时才会唤醒无线系统。换句话说,连接的建立这个耗费能量的过程并不由IoT节点来完成,而是由中心节点通过发送唤醒信号来完成。

当建立连接的事件由中心节点来驱动时,一切都变得简单。首先,中心节点可以发射一段射频信号,而IoT节点可以通过能量获取(energy harvesting)电路从该射频信号中获取能量为内部电容充电。当IoT节点的电容充电完毕后,无线连接系统就可以使用电容里的能量来发射射频信号与中心节点通讯。这样一来,就可以做到无电池 *** 作。想象一下,如果不是使用唤醒式无线系统,而是使用IoT主动连接的话,无电池就会变得困难,因为无法保证IoT节点在需要通讯的时候在节点内有足够的能量。反之,现在使用唤醒式系统,中心节点在需要IoT节点工作时首先为其充电唤醒,就能保证每次IoT节点都有足够能量通讯。

那么,这样的唤醒式无线系统功耗有多低呢在2016年的ISSCC上,来自初创公司PsiKick发表的支持BLE网络的唤醒式接收机在做无线通讯时仅需要400 nW的功耗,而到了2017年ISSCC,加州大学圣地亚哥分校发表的唤醒式接收机更是把功耗做到了45 nW,比起传统需要毫瓦级的IoT芯片小了4-6个数量级!

来自UCSD的45 nW超低功耗唤醒式接收机

反射调制系统

唤醒式接收机主要解决了无线链路中如何低功耗接收信号的问题,但是在如果使用传统的发射机,则还是需要主动发射射频信号。发射机也是非常费电的,发射信号时所需的功耗常常要达到毫瓦数量级。那么,有没有可能在发射机处也做一些创新,降低功耗呢

确实已经有人另辟蹊径,想到了不发射射频信号也能把IoT节点传感器的信息传输出去的办法,就是由华盛顿大学研究人员提出的使用发射调制。反射调制有点像在航海和野外探险中的日光信号镜,日光信号镜通过不同角度的反射太阳光来传递信息。在这里,信号的载体是太阳光,但是太阳光能量并非传递信号的人发射的,而是作为第三方的太阳提供的。类似的,华盛顿大学研究人员提出的办法也是这样:中心节点发射射频信号,IoT节点则传感器的输出来改变(调制)天线的发射系数,这样中心节点通过检测反射信号就可以接收IoT节点的信号。在整个过程中IoT节点并没有发射射频信号,而是反射中心节点发出的射频信号,这样就实现了超低功耗。

华盛顿大学的Shyam Gollakota教授率领的研究组在反射调制实现的超低功耗IoT领域目前已经完成了三个相关项目。去年,他们完成了passive WiFi和interscatter项目。Passive WiFi用于长距离反射通信,使用WiFi路由器发射功率相对较高的射频信号,而IoT节点则调制天线反射系数来传递信息。多个IoT节点可以共存,并使用类似CDMA扩频的方式来同时发射信息。interscatter则用于短距离数据传输,使用移动设备发射功率较低的射频信号,而IoT节点则调制该射频信号的反射来实现信息传输的目的。Passive WiFi和interscatter芯片的功耗都在10-20微瓦附近,比起动辄毫瓦级别的传统IoT无线芯片小了几个数量级,同时也为物联网节点进入人体内等应用场景铺平了道路。

Passive WiFi(上)与Interscatter(下)使用反射调制,分别针对长距离与短距离应用。

Passive WiFi和Interscatter还需要使用电信号因此需要供电,而Gollakota教授最近发表的Printed WiFi则是更进一步,完全不需要供电了!

在物联网的应用中,许多需要检测的物理量其实不是电信号,例如速度,液体流量等等。这些物理量虽然不是电物理量,但是由于目前主流的信号处理和传输都是使用电子系统,因此传统的做法还是使用传感器电子芯片把这些物理量转化为电信号,之后再用无线连接传输出去。其实,这一步转化过程并非必要,而且会引入额外的能量消耗。Printed WiFi的创新之处就是使用机械系统去调制天线的反射系数,从而通过反射调制把这些物理量传输出去。这样,在IoT节点就完全避免了电子系统,从而真正实现无电池工作!

目前,这些机械系统使用3D打印的方式制作,这也是该项目取名Printed WiFi的原因。

上图是Printed WiFi的一个例子,即转速传感器。d簧、齿轮等机械器件在上方测速仪旋转时会周期性地闭合/打开最下方天线(slot antenna)中的开关,从而周期性地(周期即旋转速度)改变最下方天线的反射特性,这样中心节点只要通过反射射频信号就能读出旋转速度。最下方的图是该传感器在不同转速时的反射信号在时间域的变化情况,可见通过反射信号可以把转速信息提取出来。

超低功耗传感器

物联网节点最基本的目标就是提供传感功能,因此超低功耗传感器也是必不可少。目前,温度、光照传感器在经过深度优化后已经可以实现nW-uW数量级的功耗,而在智能音响中得到广泛应用的声音传感器则往往要消耗mW数量级甚至更高的功耗,因此成为了下一步突破研发的重点。

在声音传感器领域,最近的突破来自于压电MEMS。传统的声音传感器(即麦克风)必须把整个系统(包括后端ADC和DSP)一直处于活动待机状态,以避免错过任何有用的声音信号,因此平均功耗在接近mW这样的数量级。然而,在不少环境下,这样的系统其实造成了能量的浪费,因为大多数时候环境里可能并没有声音,造成了ADC、DSP等模组能量的浪费。而使用压电MEMS可以避免这样的问题:当没有声音信号时,压电MEMS系统处于休眠状态,仅仅前端压电MEMS麦克风在待命,而后端的ADC、DSP都处于休眠状态,整体功耗在uW数量级。而一旦有用声音信号出现并被压电MEMS检测到,则压电MEMS麦克风可以输出唤醒信号将后面的ADC和DSP唤醒,从而不错过有用信号。因此,整体声音传感器的平均功耗可以在常规的应用场景下可以控制在uW数量级,从而使声音传感器可以进入更多应用场景。

超低功耗MCU

物联网节点里的最后一个关键模组是MCU。MCU作为控制整个物联网节点的核心模组,其功耗也往往不可忽视。如何减小MCU的功耗MCU功耗一般分为静态漏电和动态功耗两部分。在静态漏电部分,为了减小漏电,可以做的是减小电源电压,以及使用低漏电的标准单元设计。在动态功耗部分,我们可以减小电源电压或者降低时钟频率来降低功耗。由此可见,降低电源电压可以同时降低静态漏电和动态功耗,因此能将电源电压降低的亚阈值电路设计就成了超低功耗MCU设计的必由之路。举例来说,将电源电压由12V降低到05V可以将动态功耗降低接近6倍,而静态漏电更是指数级下降。当然,亚阈值电路设计会涉及一些设计流程方面的挑战,例如如何确定亚阈值门电路的延迟,建立/保持时间等都需要仔细仿真和优化。在学术界,弗吉尼亚大学的研究组发布了动态功耗低至500nW的传感器SoC,其中除了MCU之外还包括了计算加速和无线基带。在已经商业化的技术方面,初创公司Ambiq的Apollo系列MCU可以实现35uA/MHz的超低功耗,其设计使用了Ambiq拥有多年积累的SPOT亚阈值设计技术。在未来,我们可望可以看到功耗低至nW数量级的MCU,从而为使用能量获取技术的物联网节点铺平道路。

结语

随着物联网的发展,目前第一代广域物联网已经快速铺开走进了千家万户。然而,广域物联网节点由于必须满足覆盖需求,因此射频功耗很难做小,从而限制了应用场景(例如人体内传感器等无法使用大容量电池的场景)。局域物联网将会成为物联网发展的下一步,本文介绍的能量获取技术配合超低功耗无线通信、MCU和传感器可望让物联网节点突破传统的限制,在尺寸和电池寿命方面都得到革命性的突破,从而为物联网进入可植入式传感器等新应用铺平道路。

以上由物联传媒转载,如有侵权联系删除


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12771172.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存