物联网
简单理解:物物相连的互联网,即物联网。物联网在国际上又称为传感网,这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。世界上的万事万物,小到手表、钥匙,大到汽车、楼房,只要嵌入一个微型感应芯片,把它变得智能化,这个物体就可以“自动开口说话”。再借助无线网络技术,人们就可以和物体“对话”,物体和物体之间也能“交流”,这就是物联网。随着信息技术的发展,物联网行业应用版图不断增长。
现在的物联网产业以应用层、支撑层、感知层、平台层以及传输层这五个层次构成。
云计算
云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够快速提供,只需投入很少的管理工作,或与服务商进行很少的交互。
经典应用案例:苹果icloud
苹果icloud不仅是一个云端硬盘,它可让你轻松访问你所有苹果设备上的一切内容,并自动同步所有设备中的文件、、音乐、日程表、邮件、联系人目录,更贴心的是,在你修改文件后还能自动将修改同步到所有苹果设备并对旧文件备份。你可以选择免费的5G存储空间,也可以每年花费2499美元购买iTunes Match服务,这样一来,你可以通过任何苹果设备收听存放在苹果云服务器中的音乐。
大数据
大数据相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
物联网和云计算的关系
云计算相当于人的大脑,是物联网的神经中枢。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
大数据与云计算的关系
大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据、云计算和物联网的关系
物联网对应了互联网的感觉和运动神经系统。云计算是互联网的核心硬件层和核心软件层的集合,也是互联网中枢神经系统萌芽。大数据代表了互联网的信息层(数据海洋),是互联网智慧和意识产生的基础。包括物联网,传统互联网,移动互联网在源源不断的向互联网大数据层汇聚数据和接受数据。云计算与物联网则推动了大数据的发展。
物联网与大数据的关系是:
大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。
物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
物联网是指通过 各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程。
采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
大数据技术是一种新一代技术和构架,它以成本较低、以快速的采集、处理和分析技术,从各种超大规模的数据中提取价值。
大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,甚至可以改变许多行业的商业模式。
大数据(big data)是这样的数据集合:数据量增长速度极快,用常规的数据工具无法在一定的时间内进行采集、处理、存储和计算的数据集合。
云计算是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。
因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
云计算的就业前途,某种意义上也可以理解为云计算为我们提供的服务,存在一定的必然性,也就是说云计算对于社会、云计算使用者有哪些优势,也同时可以理解为,云计算的优势就是云计算的就业优势。
物联网产生大数据,大数据助力物联网大数据时代已经来临。传感器、RFID等的大量应用,电脑、摄像机等设备和智能手机、平板电脑、可穿戴设备等移动终端的迅速普及,促使全球数字信息总量的急剧增长。物联网是大数据的重要来源,随着物联网在各行各业的推广应用,每秒钟物联网上都会产生海量数据。
数据是资源、财富。大数据分析已成为商业的关键元素,基于数据的分析、监控、信息服务日趋普遍。在各行各业中,数据驱动的企业越来越多,他们须实时吸收数据并对之进行分析,形成正确的判断和决策。大数据正成为IT行业全新的制高点,而基于应用和服务的物联网将推动大数据的更广泛运用。
由于物联网数据具有非结构化、碎片化、时空域等特性,需要新型的数据存储和处理技术。而大数据技术可支持物联网上海量数据的更深应用。物联网帮助收集来自感知层、传输层、平台层、应用层的众多数据,然后将这些海量数据传送到云计算平台进行分析加工。物联网产生的大数据处理过程可以归结为数据采集、数据存储和数据分析三个基本步骤。数据采集和存储是基本功能,而大数据时代真正的价值蕴含在数据分析中。物联网数据分析的挑战还在于将新的物联网数据和已有的数据库整合。
物联网上的大数据应用空间广阔,大数据和物联网结合充满无限可能。随着物联网、互联网、移动互联网、智能终端、大屏显示系统、云计算平台等的联合应用,物联网上的大数据可帮助人们建立智能监控模型、智能分析模型、智能决策模型等应用,深刻改变人们的生活。
智慧城市是物联网最大的应用领域,而智慧农业、智能家居、智慧物流、智能安防中的视频信息处理、智慧交通中的交通实时诱导、智慧环保中的环境监测等物联网领域都是大数据应用的“用武之地”。如:在环境监测方面,传感器借助物联网传递信息到互联网平台或移动互联网平台,实时监控环境变化。通过环境监控模型,对收集到的海量环境数据进行分析,发现环境指标变化的异常点,帮助环保部门提前预测某地环境的变化情况,对环境指标偏离正常指标值的,提前发出环境污染预警。而智能制造或“工业互联网”更是未来大数据和物联网美妙结合的经典案例。在行业应用方面,大数据和物联网的结合也会“擦出火花”。如:邮政服务可通过大数据和物联网转型为“邮政物联网”。邮政网络可配备低成本传感器,极大地增强邮政运营商收集有价值数据的能力。这个庞大的新数据来源可帮助邮政运营商提升运营能力,改善客户服务,创造新产品和服务,并为更有效率的决策提供支持。
物联网的价值在于其数据。物联网带来了突破性的技术进步,但管理大数据的问题也变得更加突出,需相关信息通信技术鼎力支撑。如:数据产生、捕捉、传递和分析,需快捷、稳定、可靠的广域网络,3G、4G、WiFi等无线通信技术应不断优化,以支持物联网及各传感器节点感知信息能力、传输能力、信息处理和存储能力等的全面提升。
物联网产生大数据,大数据助力物联网。由物联网引发的大数据潮流还将助推云计算等信息通信新技术的融合发展。
物联网、大数据及人工智能都是近年来互联网行业比较火热的话题,三者之间具有非常紧密的联系。想探讨物联网、大数据及人工智能之间如何融合,首先需要了解其基本概念。
概念
1、物联网
根据百度百科的解释,物联网(InternetofThings,IoT)是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络(万物互联)。物联网网络架构设计由感知层、网络层及应用层组成,分别实现数据采集、数据传输及数据应用的功能。目前,物联网已经广泛应用于智慧医疗、智慧环保、智慧城市、智能家居及物流等领域。
2、大数据
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有体量大(Volume)、及时性(Velocity)、多样性(Variety)、低价值密度(Value)及真实性(Veracity)的“5V”特性。
3、人工智能
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。目前,人工智能正在改变各行各业的传统模式,作为人工智能分支的机器学习/深度学习已经广泛用于自然语言处理(NLP)、计算机视觉(CV)、机器翻译及推荐系统等领域。
深度融合
物联网、大数据、人工智能三者之间相辅相成,可以形成一个闭环通路。物联网作为智能感知层,主要负责采集现场的数据并将数据上传至分布式数据库中;大数据作为数据存储层,将经过ETL处理后的数据保存到分布式文件系统(HDFS)或数据仓库(HIVE)中;人工智能作为应用层,可利用sparkml或tensorflow实现相关的机器学习或深度学习算法,对存储在HDFS或HIVE中的数据进行数据挖掘。
应用案例
目前,物联网、大数据、人工智能已经广泛用于智慧城市、智慧环保、智慧交通等领域。以智慧环保中的空气预警为例,首先,物联网可以作为智慧感知层,安装在客户现场的空气监测设备采集的空气质量信息通过网络传输数据中心;而后,利用大数据ETL工具(spark、hive)进行数据清洗并存储至分布式数据库/文件系统/数据仓库中;最后,利用人工智能相关技术进行大数据分析(sparkml、tensorflow),预测未来若干天的空气质量,并以此辅助进行科学决策及改善环境。
大数据是信息化社会无形的生产资料,其概念被社会各界不断演绎出多种版本,但关于大数据、物联网、之间的关系,很多人不甚明了。对此,同方物联网产业应用本部技术总监赵英,对此做出了详细的解读。大数据、物联网、之间的关系简单来说就是:大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京721暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。物联网的大数据来源于物质世界,由大量传感器产生。
物联网是一种新型的信息技术,它通过网络将物理世界与信息世界联系起来,实现对物理世界的监测、控制和管理。物联网中,传感器是实现对物理世界的监测的重要手段。传感器可以感知物理世界的信息,例如温度、湿度、压力、光线等,并将信息通过网络传送给物联网系统。
物联网系统通过处理传感器传送的信息,实现对物理世界的监测、控制和管理。处理传感器传送的信息时,会产生大量的数据,这些数据就是物联网的大数据。物联网的大数据来源于物质世界,由大量传感器产生。
总之,物联网的大数据是通过对物理世界的监测和管理,由大量传感器产生的。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)