从数据中心的角度看,物联网和大数据项目几乎总是强调网络和存储基础设施。规划人员在组织内开始实施这种大规模数据密集的项目之前,需要仔细地评估基础设施的需求。
传统的商业智能项目建立在不同于大数据项目的需求和理解的基础上。典型商业智能从清晰的想法开始尝试,必须经得起推敲,什么数据可用或必须收集来回答这些问题,需要上报何种结果,组织内谁需要这些结果。此类项目几十年来一直是企业级IT的基础。物联网(IoT)和大数据聚焦在不同的侧重点。他们会提问:如何提出正确的问题;问题是哪些,如何解决以更好地为客户服务,必须提供什么样的产品才能留住现有的客户,同时如何劝说新客户从公司购买产品和服务这通常能够说明,物联网和大数据项目各自需要不同的专业知识,不同级别的经验和不同种类的工具。因此,运营这样的项目对于IT团队会更加困难。在物联网和大数据领域迈出坚实的第一步当IT领域强大的新技术或新的方法获得了一定的动力,有人可能就会有采取一种急于求成的方法——有时候很少有人能理解怎样才能获得一次成功的初次实践。物联网和大数据显然属于这一类。这一认识可能诱导组织在一个非常令人失望或用处不大的数据上投入巨资。失败可能来自选择了不恰当的工具,没能正确配置支持系统的工具,缺乏必要的专业知识,或与错误的合作伙伴共事。一旦失败,许多决策者便将责任归咎于方法或技术。对于大数据的潜力,已经是毫无争议的议题,报告也同样鼓吹物联网,指出它将连接从我们的手机、我们的汽车到我们的家用电器等一切的一切。硬件、软件和专业服务的供应商已经加入进来,大家都想在由物联网这些技术方法将产生的潜在收益中分得一块大蛋糕。几乎所有的供应商,包括系统、存储、网络、 *** 作系统、数据管理工具和开发工具等领域的厂商都已经提出了与大数据有关的产品和服务集。这些同质化的厂商也开始提供从智能设备中进行数据转换和收集数据的方法。集成物联网与大数据在开始物联网和大数据项目之前,明智的领导者会慢下来,并评估什么是企业真正需要的东西。评估IT团队的能力和专长。现实地考虑什么事情可能会出错,从中可以汲取到哪些信息。组织通常设计大数据项目以确定哪些问题要问,而不是跟踪具体的,先前已知的需求。这意味着决策者和开发人员必须首先要确定的是,基于 *** 作的、机械的以及其他类型已经被收集的数据应该提出何种问题,因为很可能没有人会花时间来分析数据。物联网项目很可能成为大数据实施所需的数据来源。物联网和大数据两者都通常依赖的NoSQL数据库,反过来,依靠系统执行数据管理软件集群,网络容量的广泛使用和共享内存或复杂的数据缓存技术,将加快现有存储介质的应用。物联网项目很可能对数据中心网络和存储产生巨大的影响。大多数组织都拥有丰富的原始数据,数据来自于 *** 作系统、数据库管理产品、应用框架、应用程序和服务设备的销售点或点的自动收集信息。组织可以使用数据来获得更加清晰的,整体感知程序、产品和培训的优势和劣势。将物联网混合加入到大数据中,为公司提供进一步了解其客户提供帮助。分析这一巨大的和不断增长的数据,可以往往为企业提供线索,以更好地把握客户的需求。企业也可以了解到它哪些问题所对应的信息没有被正确地收集,并寻求自己的独特的问题解决方法。拒绝那种瞄准-射击-命中的速成方法,这点在物联网项目中尤其重要。很少有组织有这足够的胆量推迟项目,因为这会刺激或冒犯某个客户。IT团队必须明确地了解自己的目的,团队所使用的工具,选择的供应商将是这一尝试的重要部分。只有这样一个团队才能捕捉和驯服大数据“野兽”或促成将物联网有效的实践。这就需要一个组织来正确配置和提供其基础设施,该过程涉及部署必要的处理能力、内存、存储和网络容量,还有适当的软件开发,持续的运营、监控,还有管理和安全。上述这些元素中的每一个必须精心地选择和配置。然而,该过程并非一定会成为越做越好的案例。与物联网或其他客户面临的项目,这将是明智的考虑客户将如何反应,在网上与业务的所有时间。性能,隐私和功能功能都非常重要。物联网和大数据开发工具每一套大数据的方法都有它自己的一系列开发及部署工具。同样的道理也适用于物联网平台。要建立最有效的平台,公司的开发人员必须理解这些工具,知道如何使用它们,并清楚如何建立一套最优的系统。在大数据项目上工作的人可能会选择使用与物联网开发团队所不同的工具。然而,两个团队之间必须保持彼此沟通。物联网团队需要收集适当数据来支持大数据的实施,对于刚刚接触这些类型的新技术的企业,选择较小的项目起步是很明智的,之后伴随着团队开发的经验和专业知识的提升,再涉足大型项目。组织必须按照所评估的那样对待大数据项目,这需要IT管理团队的卓有远见的运营活动。选择适合于企业管理框架的监控和管理工具非常重要,它们可以提供易于理解和有用的数据。物联网项目,由于它直接面对客户,需要轻量、监测响应和管理。如果这些工具太重,顾客会抱怨贵公司对昂贵的数据计划的消耗太大。在信息收集和功能提供中间找到适当的平衡,整体性能和数据的来回发送容量会是棘手的问题。许多组织在大数据中找到真正的前景。物联网的最佳实践仍在不断涌现,所以标准咱不能广泛应用。然而,在这两种情况下,结合技术专长正确地选择和配置组件是一个成功的项目的关键要素。适当的配置选择,选择系统驱动,支持的 *** 作系统以及系统、网络和存储配置部署。然而,通常最重要的因素是,在项目上找好合适的心态。在大数据的案例中,目标应该是了解提出何种问题才是正确的,而不是把项目看作是另外一个商业智能的倡议。在物联网的案例中,该项目必须能够提供有用的服务,以换取客户对收集数据的授权,以满足基于大数据的销售活动,支持和商业智能系统。1、大数据专业,一般是指大数据采集与管理专业;
2、课程设置,大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Mapreduce的并行算法、部署Hive并实现一个的数据 *** 作等等,实际提升企业解决实际问题的能力。
3、核心技术,
(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Mapreduce、分布式数据库HBase、分布式数据仓库Hive。
(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
(3)分布式数据处理。详细介绍分析Map/Reduce计算模型和Hadoop Map/Reduce技术的原理与应用。
(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。
(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。
4、行业现状,
今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如百度、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。
物联网简单的说就是物物相连的网络,通过物联网能够构建出一个万物互联的世界,而万物互联的世界必然会带来万物智能,从这个角度来看,物联网的发展空间还是非常广阔的。
物联网通常分为四个层次,分别是设备、网络、平台和应用。设备往往是物联网设计的第一步,不同的设备具备不同的功能,比如大量的传感器设备能够获取各种环境参数,对于一些工业生产环境来说,这些传感器还是非常重要的。传感器设备往往需要通过网关把数据发送到物联网平台,物联网平台根据传感器发回来的数据进行针对性的分析和判断,以便于决策是否进行相应的调整,而这正是大数据和人工智能所要关心的事情。从这个角度来看,物联网、大数据和人工智能的关系是非常密切的。
当前互联网正在从消费互联网向产业互联网发展,产业互联网需要综合采用物联网、大数据、云计算、人工智能等技术来赋能传统行业。物联网是产业互联网相关技术的基础,因为没有物联网就没有大数据,更谈不上智能化,所以物联网建设通常是产业互联网建设的排头兵。从这个角度来看,未来学习物联网相关技术是不错的选择,会有众多的发展机会。
物联网平台的解决方案是比较复杂的,目前物联网平台的研发依然处在未完全成熟的阶段,大量的技术标准还有待建立和完善,相信随着5G标准的落地,会进一步促进物联网平台标准化的建设。
什么是物联网,发展趋势怎样。学习物联网有前途吗?去年我应邀参加了上海物联网培训会,认识了物联网,并与我们陕西杨凌祥荷牌有机富硒农业专业研发有机富硒农业番茄,黄瓜,甜椒,马铃薯,红薯,猕猴桃,葡萄,苹果与上海合其家物联网公司董事长林总进行现场演讲与沟通。互联网是由美国制定的技术标准,而物联网是由中国制定技术标准的。通过物联网学习,认识了物联网公司各界朋友,今后物联网区块链将是我国重奌发展的方向,万物相连,物联网是未来信息技术发展的方向。也是信息技术一场革命。物联网是我国信息技术的发展方向。
一 大数据专业课程有哪些
首先我们要了解Java语言和Linux *** 作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的排队买票你知道不数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以 *** 作它,因为它们都是用JVM的。
二 数据与大数据专业学什么课程
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、回Zookeeper、Kafka。
大数据实时计算答阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实 *** 企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
三 大数据专业都要学什么课程
大数据专业有很多课程
四 云计算与大数据专业的主要课程是什么
大数据的基础知识,科普类的,个人去买本书就行了,大数据时代这样的书很多介绍的大数据的。
另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。
大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux *** 作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
(4)大数据专业课程内容扩展阅读:
应用领域
大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。
大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。
五 大数据专业主要课程有哪些
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
六 大数据课程都学什么啊
大数据课程学习的内容有6个阶段:
1阶段
JavaSE基础核专心
2阶段
数据库关键技术属
3阶段
大数据基础核心
4阶段
Spark生态体系框架&大数据高薪精选项目
5阶段
Spark生态体系框架&企业无缝对接项目
6阶段
Flink流式数据处理框架
按照顺序学习就可以了,希望你早日学有所成。
七 数据与大数据专业学什么课程
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实 *** 企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
八 大数据专业课程有哪些 专业介绍
随着互联网技术的不断发展,当今的时代又被称之为大数据时代。
目前互联网企业对大数据人才需求非常大,培训机构出来的人才也很好找工作,南京课工场最近一批的大数据学员就业就很高,薪资普遍很高。当然,工作好找的前提是你大数据的相关技术要过关哦!
从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。从2019年的秋招情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
对于当前在读的本科生来说,如果不想读研,那么应该从以下三个方面来提升自身的就业竞争力:
第一:提升程序设计能力。动手实践能力对于本科生的就业有非常直接的影响,尤其在当前大数据落地应用的初期,很多应用级岗位还没有得到释放,不少技术团队比较注重学生程序设计能力,所以具备扎实的程序设计基础还是比较重要的。
第二:掌握一定的云计算知识。大数据本身与云计算的关系非常紧密,未来不论是从事大数据开发岗位还是大数据分析岗位,掌握一定的云计算知识都是很有必要的。掌握云计算知识不仅能够提升自身的工作效率,同时也会拓展自身的技术边界。
第三:重视平台知识的积累。产业互联网时代是平台化时代,所以要想提升就业能力应该重视各种开发平台知识的积累,尤其是与行业领域结合比较紧密的开发平台。实际上,大数据和云计算本身就是平台,所以大数据专业的学生在学习平台开发时也会相对顺利一些。
九 大数据学习需要哪些课程
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计专分析、高属等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux *** 作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等
数据分析、机器学习与物联网我们当前所处的世界,联网程度不断上升,低成本传感器和分布式智能也在不断普及,产业即将面临这一切带来的革命性的冲击;同时,在此过程中还会产生大量的数据,其规模将庞大到远远超过人类所能处理的范畴。对此,企业是否能足够迅速地适应并演进自身的业务,以维持在竞争格局中所处的位置?面对我们栖身的环境中植入的这些全新的信息来源和智能设备,人类应当如何掌握它们并从中获益?利用不断演进的技术组织机构将需要建立起内部数据仓库,以便能够利用新的数据源和数据流。智能接入设备亦将在某些情况下取代人的角色,它们将能够自行决策、执行自我调整,或是根据需要引发对自身的纠正和修复。在另一些情景中,众多设备的集合将聚集在一起成为完整的系统,这样的系统可以采用新的方法进行优化;而由系统聚集成的系统,将会彼此共享数据,并成为由数据和设备组成的生态系统。机器学习(指从数据中推导出意义的众多方法)注定将成为这个生态系统中的一部分;此外,随着企业着手为物联网(IoT)做准备,传统业务和数据分析技术也同样将被纳入到该生态系统之中物联网——某些人更愿意称之为“万物互联”(Internet of Everything)——正处于不断上升的轨道上。一项Gartner研究指出,在2020年IoT单元的数量将达到260亿,而IoT产品和服务的市值将达到3000亿美元1。另外,GE在工业互联网(Industrial Internet)——这一概念包含用于监控和优化工业设备(例如喷气式引擎、铁路机车、动力涡轮机和制造工艺)性能的机制和应用——领域已经活跃了很长时间。根据GE的估算和预测,在接下来20年中,工业互联网将帮助全球GDP产值提高10到15万亿美元(没错,万亿量级)。当然,围绕着已问世的全新技术和正在逐步浮现的技术概念,市场中充斥着大量炒作。例如,Gartner备受争议的 “成熟度曲线”(注:也有些人使用“炒作周期”这一贬义说法)报告就把IoT摆在了“翘首以望的顶峰”的位置上(而大数据作为之前的热点,已经进入了“理想幻灭的低谷” 3)。然而,哪怕企业家们为之表现出群情激昂的兴奋,或是记者们在笔下展现出了对未来的狂热展望,在现实中依旧存在着大量的挑战,组织机构必须克服它们,才能够真正乘上这次技术演进的东风。挑战组织机构必须聚焦于:了解产品技术和IT领域中,企业能力的相对成熟度;了解可以纳入哪些类型的IoT功能,以及新能力将会在哪些方面对客户价值带来影响;了解机器学习和预测分析模型的角色;基于市场变化的迅捷程度和竞争对手的相对敏捷度,重新思考业务模型和价值链。接下来,让我们对这些挑战逐一进行更详细地分析。理解产品和IT成熟度可以从产品和IT两个维度分别进行分析。首先,产品组合的成熟度如何?它是属于变更较缓慢且逐步演进的传统类型的产品,还是属于前进速度更快,同时具有更复杂生态系统的产品?矿产设备在技术上非常复杂。并且,与科学研究仪器相比,它拥有更为漫长的设备生命周期,和相对更缓慢的演进速度。然而,这并不意味着科研仪器的公司,在利用IoT产品进行系统优化方面更具优势。另一个需要考虑的因素是IT流程的成熟度。各种类型的组织机构都可能会因采用IoT而获益;然而,要想达成这一目标,它们所需采用的模型却各不相同。让我们进一步分析一下IT成熟度水平这个因素。举例来说,科学研究仪器供应商或许拥有先进技术,但却可能缺乏强有力的IT架构、流程和IT治理能力。与之相反,矿业设备制造商或许拥有非常成熟的内部IT流程。对科学研究仪器公司而言,IoT将让它们能够对安置在现场的仪器设备进行功能升级;但面对由多种类型设备组成的实验室信息生态系统库,公司并不一定愿意尝试去进行优化。(当然,以IT作为成本中心——例如内部IT管理——方面的成熟度不足,并不等于以IT作为利润中心——例如IT产品——方面成熟度的缺失;但当开发或拓展IT服务的时候,许多组织机构都选择在现有的基础IT能力之上构建。)在去年的哈佛商业评论(Harvard Business Review)中,讨论了一个矿业设备领域的例子:Joy Global是一家矿业设备制造商,其专家团队横跨与采矿作业相关的多种系统和流程。Joy Global以此为依托,针对来自多家供货商的一系列设备,提供监控、维护和优化的服务4。了解IoT能力接下来,应该考虑一下使用智能联网设备中的哪些能力。刚刚提到的哈佛商业评论刊登的文章4指出,IoT包含四种类型的能力:监视——传感器提供关于运行环境、产品使用和性能方面的数据;控制——可以控制并定制个性化产品功能;优化——来自监视与控制的反馈回路,能够提供更高的效率、更好的性能、预防性维护,以及诊断和修复;自治——监视、控制和优化将支持独立运行、不同系统间的协作、与环境交互、个性化、补给,以及自我诊断和修复。这四个层级的能力,将为重新定义供应链并重新配置价值链提供支持。我们不应该抱有产品的功能应固定不变的观点;相反,我们应该认为它们将更具灵活性和适应性。那些智能联网设备和产品将具有可变特性,并能够随着用户需求的变化而改变。在数年以前,软件制造商就已经认识到了这一点。而现在,物理对象也正在逐渐转变为软件驱动功能的载体或容器。上述这些层级的能力要求越来越精密的数据分析方法——从收集和应用数据,到支持算法自身运用数据并在同时进行学习。第一个层级的能力——监视——将成为一套实时的机制,我们可以运用它更好地了解现场情况和用户需求,并提供新的能力。这意味着组织机构的传统产品和服务将不再泾渭分明,而且二者的边界将彼此渗透。在过去,现场设备的维护由某个现场服务承包公司承担,设备制造商的业务并不涉及此环节。而在智能设备与监视能力结合后,设备可以在故障发生前将所需的服务提前告知制造商。同时,设备制造商也可以将常规维护纳入自己的服务范畴。不过,如果利润和物流对组织机构而言是个问题的话,那么复杂的维修工作将依旧由专业承包商完成。这一“去中介化”(disintermediation)的模式也可以运用到分发链中。设备可以自动发起补充供应的请求,从而降低甚至消除供应链中的物流和库存压力。控制是建立在监视之上的更复杂的应用。我们可以监视设备运行情况,并通过控制设备的多个部分或多个系统,来扩展人工干预的边界。想象一下,在 *** 作大部分功能都是自动化执行的系统或机器时,人类所扮演的角色:人类指导机器运转,并寻找系统设计的时候没有预料到(或是基于经济划算的角度未设计应对预设)的边界条件、异常和例外。接下来,人类使用自己的判断做出变更、纠正或调整。我们并不需要(在空间上)与设备在一起,或许我们也无需实时监视它们(这取决于流程)。我们通过监视层面采集数据并进行处理(某些数据处理必须在特定时刻完成),并通过控制层面将这些数据实时(或准实时)地运用到设备或装置的运行上。需要组织机构做出的战略决策是,是否以及何时在产品中提供更多的控制能力,以及是将其作为一种服务向客户开放,还是让客户拥有这些功能。第三个层级的能力——优化——可以拓展到某个单体对象、一系列对象,或是一套由来自多家制造商、使用不同技术的对象组成的生态系统的表现方面。是否将提供的服务拓展到这一领域,取决于围绕着价值链和流程边界的知识和经验的水平。前面提到的矿业的例子,反映出Joy Global与供应商相比的优势,主要在于拥有在流程生态系统中更加聚焦的视角。以卡车制造商为例,它无法很好地优化复杂的矿业设备,但却会凭借对自己的一系列卡车(以及潜在的一系列其他制造商生产的卡车)进行优化而获益——如果行业动态确实具有商业意义的话。要将优化的范围延伸到独立运行,还需要对这三个层级的能力进行一些拓展,以支持与环境及其他系统进行受限程度更低的交互。自治要求围绕着算法提供更多的智能,以便应对计划外的情况——程序员和系统工程师未能明确设计这些情况下的方案。自主运行需要整合具有适应性的机器学习方法,以应对新出现的情况,并将之纳入到用于监视、控制和优化的核心算法中。了解分析和机器学习2014年11月,施乐公司帕洛阿尔托研究中心的Mike Kuniavsky在IDTechEx上进行了一场名为“IoT领域中预测分析方面的用户体验”的演讲。在演讲中他表示,我们应该将几乎所有功能都存放(或是在不久的将来存放)在云上。数据和功能可以从任何位置、通过任何设备访问。而专业设备则提供用户访问数据的环境。健康手环可以通过iPhone或笔记本电脑,在特定的锻炼环境中访问用户的身体健康数据。在这种情况下,健康手环扮演了IoT传感器的角色,同时也提供了访问和使用数据的一种途径,而且它还通过软件功能包含了其他一些设备(例如计步器)的能力。设备上产生的数据可以为厂家提供额外的洞见,帮助其了解消费者的使用情况和喜好,并藉此升级功能或开发新特性。如果汇聚来自用户群的数据并结合其他数据集,那么新的洞见可以阐明流行病方面的数据、人群活动水平、生活方式和人口统计数据。对市场人员、健康服务提供者、保险公司和政府机构来说,这些信息具有宝贵的价值。(当然,我们必须认真对待隐私和数据使用许可方面的责任。)我们可以使用机器学习算法,基于这些数据模式作出预测。例如,在一份来自Mayo Clinic的研究中,发掘出了活动数据与心脏病人恢复速度的相关性5。同样的机器学习和预测算法也是许多联网智能消费设备的基础。例如,Nest恒温器是一套能够使用数据模式的设备,它预测消费者对于某个特定房间、在一天中的某个特定时刻的温度要求。(另一个控制和优化的例子体现在聚居区的层面。在获得了业主许可的情况下,电力设施可以通过远程调节的方式,控制成百上千的Nest设备,将室温调高或调低几度,从而完成高峰期的用能负载调度)。这类消费设备涵盖了从声音模式(例如亚马逊的个人助理输入设备Echo6)到更复杂的行为和活动模式(例如捷豹的路虎监视系统,它依赖于一套复杂的软件系统,该系统让汽车能够学习、预测和检查,并提醒车上的乘客帮助驾驶员自动委派次要任务,以便驾驶员将更多的注意力集中在驾驶上7)进行学习的范围。优化算法通过使用机器学习机制,来利用从动态环境下交互的传感器和智能设备传回的数据。算法不能基于特定的参数,精确地预测这些多变的情况,而是需要不断地感知、响应并适应。例如,随着汽车从驾驶员身上分担了更多的责任,它们需要与周边环境中更多的数据来源进行交互(传感器、灯光、其他车辆等等)。在工业自动化、物流和交通运输、电力网络与能源系统、交通管理、安全系统以及其他“系统的系统”等领域中的各类应用,都将让机器直接与其他机器进行交流。此外,这些应用还将基于能够演进和自适应的算法,帮助机器翻译数据流,从而使机器能够依据给定的运行参数达到要求的最终状态。反思业务模型和价值链智能联网设备要求组织机构重新检视,它们处在市场中的什么位置、以什么方式创造价值,以及这些价值将如何随着竞争环境和信息生态系统的演进而增加或减少。分析将帮助验证某些决策(例如,在对特性进行变更或是增加服务和功能后,获得实时使用数据);不过,市场新进入者和新的价值链结构或许会对业务模式带来巨大的转变,而基于公司传统业务模式做出的分析将不再具有相关性。因此,产品或服务的基础,或许会转变为来自传统产品的数据流,而不是来自产品本身的收入。新的业务模式将得以延展,甚至有可能远远超出产品本身的范畴,覆盖上游供应商或下游消费者。最重要的是,所有这些可能性,都会要求组织机构拥有围绕着其内部数据健康度和用于分析的基础设施的基础能力:数据“打捞”(curation)、所有制和质量标准、具有一致性的企业架构、干净整洁地集成在一起的系统、自动化的数据载入流程,以及成熟的分析专家。如果欠缺或未能有效管理这些基础条件,组织机构将很难进行快速反应,并演化出新的分析和数据管理功能与能力。IoT将基于数据流和复杂的方法,从信息中获取洞见,并通过与企业知识整合,将之运用到价值创造方面。而不具备这些能力的组织机构将在市场上落后,或是降级到低价值、低利润的层次。数据被称为“新的石油”——我们可以拓展这一比喻,这意味着通过分析能力中的知识提炼环节,数据将被精炼为高价值产品。组织机构现在就需要在构建此类基础设施的方面投入资源,以便为接下来数年中应对供应链和价值创造环节的转型、扰动和颠覆做好准备。信息敏捷性将成为必备的核心能力。
① 物联网需要学什么课程
大学四年多了去了。大一、大二和普通的计算机学生学的一样,只是专业概论不一样。大三会有专业课比如嵌入式、传感网、专业英语等很多的课
② 物联网工程需要学哪些课程
物联网工程需要学的课程:
物联网工程导论、嵌入式系统与单片机、无线传感器网络与RFID技术、物联网技术及应用、云计算与物联网、物联网安全、物联网体系结构及综合实训、信号与系统概论、现代传感器技术、数据结构、计算机组成原理、计算机网络、现代通信技术、 *** 作系统等课程以及多种选修课。
物联网专业是一门交叉学科,涉及计算机、通信技术、电子技术、测控技术等专业基础知识,以及管理学、软件开发等多方面知识。作为一个处于摸索阶段的新兴专业,各校都专门制定了物联网专业人才培养方案。
(2)物联网课程扩展阅读:
典型应用:
智能家居
目前智能家居才刚刚兴起,物联网10时代的核心将会是“技术”,国内绝大部分传统厂商比较缺乏的是软硬结合的开发实力。
因此在这一阶段,氦氪想做的是先用一整套高效快速的解决方案帮助厂商们打好地基。而在智能家居市场的地基初步打好后,物联网20时代的核心会转移到“服务”上,比如:
电商、音乐、社交方面的互联网服务;
数据运营中心,提供数据存储、挖掘、智能算法等服务,协助市场运营、了解用户偏好等;
智慧控制系统,包括AI、语音识别、手势交互等;
安全系统,提供通讯、数据存储安全安全保障;
视频云,提供大数据量的图像、以及图像识别服务;
这时,这类“服务”将会成为氦氪关注的重点。苏立挺告诉我,目前他们已经基本完成了物联网10阶段想做的事情,正在向市场推这套智能硬件解决方案,同时他们也开始进行了物联网20阶段的一些服务开发。
在采访过程中,苏立挺多次表达了这样一个观点:物联网发展的最终核心是云端技术的比拼 。也正因为此,氦氪在自己的云端服务上加重了对可拓展性、兼容性、以及自由度的打磨。
③ 物联网应用技术专业主修课程有哪些
大体上都差不多是这些课程吧:物联网产业与技术导论,C语言程序设计,Java程序设计,无线传感网络概论,TCP/IP网络与协议
,传感器技术概论,嵌入式系统技术,RFID技术概论,工业信息化及现场总线技术,M2M技术概论
,物联网软件、标准、与中间件技术
。
更多高校物联网相关信息欢迎访问飞瑞敖网物联网信息论坛查看!
④ 物联网应用技术学什么课程
物联网
学习课程:
物联网产业与技术导论:了解物联网之RFID、M2M、传感网、两化融合等技术与应用。
物联网工程概论:全面了解物联网基本知识、技术体系以及相关理论,对物联网关键技术进行学习,如RFID技术、传感器技术、无线传感器网络技术、M2M技术等。同时应对与物联网密切相关的云计算、大数据、智能技术、安全技术也进行深入学习。
C语言程序设计:物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准。
Java程序设计:Java技术建议重点学习和掌握。物联网应用层,服务器端集成技术, 也建议了解和学习。
单片机原理及应用:物联网的底层单片机及其相关应用技术,包括控制、多媒体等。建议重点学习。
无线传感网络概论:学习各种无线RF通讯技术与标准,Zigbee, 蓝牙, WiFi等等。
移动通信技术:学习目前主流移动通信技术标准的工作原理、网络架构、网元功能、业务流程等,例如LTE,5G等等。
蜂窝物联网技术:学习当前主流蜂窝物联网技术的工作原理和应用,例如NB-IoT,LoRa,Sigfox等等。建议重点学习。
TCP/IP网络与协议:TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能。
嵌入式系统技术:嵌入式系统是物联网感知层和通讯层的重要技术。
传感器技术概论:物联网专业学生需要对传感器技术与发展,尤其是在应用中如何选用有所了解,但不一定需要了解传感器的设计与生产,对相关的材料科学,生物技术等有深入了解。
RFID技术概论:RFID作为物联网的主要技术之一,需要了解。
工业信息化及现场总线技术:工业信息化也是物联网主要应用领域,需要了解。
⑤ 物联网学些什么
物联网专业是一门来交源叉学科,涉及计算机、通信技术、电子技术、测控技术等专业基础知识,以及管理学、软件开发等多方面知识。作为一个处于摸索阶段的新兴专业,各校都专门制定了物联网专业人才培养方案,每个学校的课程不一样,但学习的范围差不多,学生需要学习包括计算机系列课程、信息与通信工程、模拟电子技术、物联网技术及应用、物联网安全技术等几十门课程,同时还要打牢坚实的数学和物理基础。另外,优秀的外语能力也是必备条件,因为目前物联网的研发、应用主要集中在欧美等国家,学生需要阅读外文资料和应对国际交流。网站域名选top。
⑥ 物联网应用技术应该要学习哪些课程
物联网产业与技术导论、C语言程序设计、Java程序设计、版无线传感网络概论、 TCP/IP网络与协议、嵌入式系权统、传感器技术概论、RFID技术概、工业信息化及现场总线技术 、M2M技术概论、物联网软件、标准、与中间件技术
⑦ 物联网课程包括哪些
物联网专业是一门交叉学科,涉及计算机、通信技术、电子技术、测控技术等专业基础知识,以及管理学、软件开发等多方面知识。在课程方面创客学院开设:计算机信息技术、程序设计语言C、数据库技术、模拟电子技术、数字逻辑与系统、HDL及系统设计、数字信号处理、无线传感器网络技术及应用、数据融合理论与技术等。信息与通信工程、电子科学技术、计算机科学与技术。
⑧ 物联网专业的主要学习内容是什么
这些课都与你的专业密切相关,但是物联网专业面很宽,其相关技术主要集中在通回信网络、计算机答和自动控制这三个大专业中。常人学好一个专业就很不容易,你需要学好三个专业的内容,这当然很难。因此,你感到无所适从也很正常。你想要有所突破,记得做好两件事:一是抽空参加思科或者微软的认证考试,增强通信网络或者计算机方面的实践能力,二是积极参加实践性课程或者课外实践活动,做一些简单的传感测控系统,通过实践理解自动控制原理。从具体应用的角度就比较容易理解啥是物联网。
⑨ 物联网专业需要学习什么课程
课程1、物联网产业与技术导论
使用电子工业出版社《物联网:技术、应用、标准和商业模式》等等教材。
在学完高等数学,物理,化学,通信原理,数字电路,计算机原理,程序设计原理等课程后开设本课程,全面了解物联网之RFID、M2M、传感网、两化融合等技术与应用。
课程2、C语言程序设计
使用清华大学出版社《C语言程序设计》等教材。
物联网涉及底层编程,C语言为必修课,同时需要了解OSGi,OPC,Silverlight等技术标准。
课程3、Java程序设计
,使用
机械工业出版社《Java语言程序设计教程》等教材。
物联网应用层,服务器端集成技术,开放Java技术也是必修课,同时需要了解Eclipse,SWT,
Flash,
HTML5,SaaS等技术。
课程4、无线传感网络概论,使用
无线龙通讯科技出版社《现代无线传感器网络概论》、北京航空航天大学出版社《短距离无线通讯入门与实战》等教材。
学习各种无线RF通讯技术与标准,Zigbee,
蓝牙,WiFi,GPRS,CDMA,3G,4G,5G等等
。
课程5、
TCP/IP网络与协议
,《TCP/IP网络与协议》,清华大学出版社,等教材。
TCP/IP以及OSI网络分层协议标准是所有有线和无线网络协议的基础,Socket编程技术也是基础技能,为必修课。
课程6、嵌入式系统技,
《嵌入式系统技术教程》,人民邮电出版社等教材。
嵌入式系统(包括TinyOS等IoT系统),是物联网感知层和通讯层重要技术,
为必修课。
课程7、传感器技术概论,
《传感器技术》,中国计量出版社,等教材。
物联网专业学生需要对传感器技术与发展,尤其是在应用中如何选用有所了解,但不一定需要了解传感器的设计与生产,对相关的材料科学,生物技术等有深入了解。
课程8、RFID技术概论,《射频识别(RFID)技术原理与应用》,机械工业出版社,等教材。
RFID作为物联网主要技术之一,需要了解,它本身(与智能卡技术融合)可以是一个细分专业或行业,也可以是研究生专业选题方向。
课程9、工业信息化及现场总线技术,《现场总线技术及应用教程》,机械工业出版社,等教材。
工业信息化也是物联网主要应用领域,需要了解,它本身也可以是一个细分专业或行业,也可作为研究生专业选题方向。
课程10、M2M技术概论
,
《M2M:
The
Wireless
Revolution》,TSTC
Publishing,等教材。
本书是美国“Texas
State
Techinical
College”推出的M2M专业教材,在美国首次提出了M2M专业教学大纲,M2M也是物联网主要领域,需要了解,建议直接用英文授课。
课程11、物联网软件、标准、与中间件技术
,《中间件技术原理与应用》,清华大学出版社,《物联网:技术、应用、标准和商业模式》,电子工业出版社,等教材。
物联网产业发展的关键在于应用,软件是灵魂,中间件是产业化的基石,需要学习和了解,尤其是对毕业后有志于物联网技术发展的学生[4]。
⑩ 物联网专业学习哪些课程
物联网产业与技术导论 C语言程序设计 、Java程序设计 无线传感网络概论 TCP/IP网络与协议 嵌入式系统技 传感器技术概论 RFID技术概论 工业信息化及现场总线技术 M2M技术概论 物联网软件、标准、与中间件技术
高国伟课程背景:
现在工业互联网、物联网迅速发展,用户规模和数据规模均大幅增加,而各种新业务及创新应用也层出不穷;商务化程度逐步攀高、“娱乐化精神”和“碎片时间的利用”优势得以保持,沟通和信息工具的价值不断深化,数据的价值已越来越多地被关注。那么这些大数据和工业互联网在工业尤其是在冶金行业为什么成为业内焦点、难点,成为未来收入的增长点、竞争的制高点、战略转型的关键点。而本课程,将与您一起探讨:工业互联网+大数据的新业务的应用以及后工业时代的场景以及我们如何用工业互联网思维和工业互联网+大数据技术改变冶金行业而使自己立于不败之地。
课程大纲:
一、 背景
1、 工业互联网概述
Ø 工业互联网定义
Ø 工业互联网发展史
2、 工业互联网三大体系发展重点
Ø 网络体系
Ø 平台体系
Ø 安全体系
3、 工业互联网实施进展情况
4、 工业互联网平台架构
二、 大数据?
1、 大数据的特征
Ø 海量
Ø 多样
Ø 价值
2、 挖掘工业大数据
3、 大数据到价值的转换
三、 大数据对各领域的改变
4、 电信领域应用
5、 医疗健康领域应用
6、 银行业领域应用
7、 交管领域应用
8、 教育领域应用
9、 智慧城市
四、 工业互联网+大数据技术如何改变工业
1、 工业互联网+的时代
Ø 5G +工业互联网技术
Ø AI +大数据+工业互联网技术
2、 工业互联网的四个维度
3、 工业互联网+大数据在冶金领域的应用
Ø 无人值守控制室
Ø 智能高炉
Ø 智能精炼炉控制
Ø 设备智能检修
Ø 柔性生产
Ø 智能仓储配送
Ø 人员安全管理
Ø 工作协同
Ø 精准营销
Ø 智慧钢厂
五、 工业互联网思维改变工业
1、 从放牧人回到猎人
2、 工业互联网的三种思维
Ø 第一性原则:用户思维
Ø 伙伴思维;
Ø 创新思维
3、 重构三个关系:客户、合作伙伴和内部关系
4、 工业互联网、大数据等技术与业务关系
5、 组织架构的变革
Ø 组织扁平化
Ø 组织敏捷化
Ø 组织网络化
Ø 组织虚拟化
6、 管理模式的变革
7、 产品研发的变革
8、 用户群体的变革
9、 用户体验的变革
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)