电脑的原理,发展史。有的分享一下。

电脑的原理,发展史。有的分享一下。,第1张

电子计算机(以下简称计算机)是一种根据一系列指令来对数据进行处理的机器。俗称“电脑”。
计算机种类繁多。实际来看,计算机总体上是处理信息的工具。根据图灵机理论,一部具有最基本功能的计算机应当能够完成任何其它计算机能做的事情。因此,只要不考虑时间和存储因素,从个人数字助理(PDA)到超级计算机都应该可以完成同样的作业。即是说,即使是设计完全相同的计算机,只要经过相应改装,就应该可以被用于从公司薪金管理到无人驾驶飞船 *** 控在内的各种任务。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。
计算机在组成上形式不一。早期计算机的体积足有一间房屋大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天,依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的计算机称为微型计算机,简称微机。我们今天在日常使用“计算机”一词时通常也是指此。不过,现在计算机最为普遍的应用形式却是嵌入式的。嵌入式计算机通常相对简单,体积小,并被用来控制其它设备—无论是飞机,工业机器人还是数码相机。
上述对于电子计算机的定义包括了许多能计算或是只有有限功能的特定用途的设备。然而当说到现代的电子计算机,其最重要的特征是,只要给予正确的指示,任何一台电子计算机都可以模拟其他任何计算机的行为(只受限于电子计算机本身的存储容量和执行的速度)。据此,现代电子计算机相对于早期的电子计算机也被称为通用型电子计算机。
历史
ENIAC 是电脑发展史上的一个里程碑本来,计算机的英文原词"computer" 是指从事数据计算的人。而他们往往都需要借助某些机械计算设备或模拟计算机。这些早期计算设备的祖先包括有算盘,以及可以追溯到公元前87年的被古希腊人用于计算行星移动的Antikythera mechanism。随着中世纪末期欧洲数学与工程学的再次繁荣,Wilhelm Schickard于1623 年率先研制出了欧洲第一台计算设备。
1801年,Joseph Marie Jacquard对织布机的设计进行了改进,其中他使用了一系列打孔的纸卡片来作为编织复杂图案的程序。Jacquard 式织布机,尽管并不被认为是一台真正的计算机,但是它的出现确实是现代计算机发展过程中重要的一步。
查尔斯・巴比奇(Charles Babbage)是构想和设计一台完全可编程计算机的第一人,当时是1820年。但由于技术条件,经费限制,以及无法忍耐对设计不停的修补,这台计算机在他有生之年始终未能问世。约到19世纪晚期,许多后来被证明对计算机科学有着重大意义的技术相继出现,包括打孔卡片以及真空管。Hermann Hollerith设计了一台制表用的机器,就实现了应用打孔卡片的大规模自动数据处理。
在20世纪前半叶,为了迎合科学计算的需要,许许多多单一用途的并不断深化复杂的模拟计算机被研制出来。这些计算机都是用它们所针对的特定问题的机械或电子模型作为计算基础。20世纪3,40年代,计算机的性能逐渐强大并且通用性得到提升,现代计算机的关键特色被不断地加入进来。
克劳德・香农(Claude Shannon)于1937年发表了他的伟大论文《对继电器和开关电路中的符号分析》,文中首次提及数字电子技术的应用。他向人们展示了如何使用开关来实现逻辑和数学运算。此后,他通过研究Vannevar Bush的微分模拟器进一步巩固了他的想法。这是一个标志着二进制电子电路设计和逻辑门应用开始的重要时刻,而作为这些关键思想诞生的先驱,应当包括:Almon Strowger,他为一个含有逻辑门电路的设备申请了专利;尼古拉・特斯拉(Nikola Tesla),他早在1898年就曾申请含有逻辑门的电路设备;Lee De Forest,于1907年他用真空管代替了继电器。
沿着这样一条上下求索的漫漫长途去定义所谓的“第一台电子计算机”可谓相当困难。1941年5月12日,Konrad Zuse完成了他的机电共享设备“Z3”,这是第一台具有自动二进制数学计算特色以及可行的编程功能的计算机,但还不是“电子”计算机。此外,其他值得注意的成就主要有:1941年夏天诞生的Atanasoff-Berry计算机,这是一台具有特定意图的计算机,但它使用了真空管计算器,二进制数值,可复用内存;在英国于1943年被展示的神秘的巨像计算机(Colossus computer),尽管编程能力极其有限,但是它的的确确告诉了人们使用真空管既值得信赖又能实现电气化的再编程;哈佛大学的Harvard Mark I;以及基于二进制的“埃尼爱克”(ENIAC,1944年),这是第一台通用意图的计算机,但由于其结构设计不够d性化,导致对它的每一次再编程都意味着电气物理线路的再连接。
开发埃尼爱克的小组针对其缺陷又进一步完善了设计,并最终呈现出今天我们所熟知的冯・诺伊曼体系结构(程序存储体系结构)。这个体系是当今所有计算机的基础。20世纪40年代中晚期,大批基于此一体系的计算机开始被研制,其中以英国最早。尽管第一台研制完成并投入运转的是“小规模实验机”(Small-Scale Experimental Machine,SSEM),但真正被开发出来的实用机很可能是EDSAC。
在整个20世纪50年代,真空管计算机居于统治地位。到了60年代,晶体管计算机将其取而代之。晶体管体积更小,速度更快,价格更加低廉,性能更加可靠,这使得它们可以被商品化生产。到了70年代,集成电路技术的引入极大地降低了计算机生产成本,计算机也从此开始走向千家万户。
[编辑] 原理
个人电脑的主要结构:
显示器
主板
CPU (微处理器)
主要储存器 (内存)
扩充卡
电源供应器
光驱
次要储存器 (硬盘)
键盘
鼠标
尽管计算机技术自20世纪40年代第一台电子通用计算机诞生以来以来有了令人目眩的飞速发展,但是今天计算机仍然基本上采用的是存储程序结构,即冯・诺伊曼体系结构。这个结构实现了实用化的通用计算机。
存储程序结构间将一台计算机描述成四个主要部分:算术逻辑单元(ALU),控制电路,存储器,以及输入输出设备(I/O)。这些部件通过一组一组的排线连接(特别地,当一组线被用于多种不同意图的数据传输时又被称为总线),并且由一个时钟来驱动(当然某些其他事件也可能驱动控制电路)。
概念上讲,一部计算机的存储器可以被视为一组“细胞”单元。每一个“细胞”都有一个编号,称为地址;又都可以存储一个较小的定长信息。这个信息既可以是指令(告诉计算机去做什么),也可以是数据(指令的处理对象)。原则上,每一个“细胞”都是可以存储二者之任一的。
算术逻辑单元(ALU)可以被称作计算机的大脑。它可以做两类运算:第一类是算术运算,比如对两个数字进行加减法。算术运算部件的功能在ALU中是十分有限的,事实上,一些ALU根本不支持电路级的乘法和除法运算(由是使用者只能通过编程进行乘除法运算)。第二类是比较运算,即给定两个数,ALU对其进行比较以确定哪个更大一些。
输入输出系统是计算机从外部世界接收信息和向外部世界反馈运算结果的手段。对于一台标准的个人电脑,输入设备主要有键盘和鼠标,输出设备则是显示器,打印机以及其他许多后文将要讨论的可连接到计算机上的I/O设备。
控制系统将以上计算机各部分联系起来。它的功能是从存储器和输入输出设备中读取指令和数据,对指令进行解码,并向ALU交付符合指令要求的正确输入,告知ALU对这些数据做那些运算并将结果数据返回到何处。控制系统中一个重要组件就是一个用来保持跟踪当前指令所在地址的计数器。通常这个计数器随着指令的执行而累加,但有时如果指令指示进行跳转则不依此规则。
20世纪80年代以来ALU和控制单元(二者合成中央处理器,CPU)逐渐被整合到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。
由控制器解释,运算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。一般可以分为四类:1)、数据移动(如:将一个数值从存储单元A拷贝到存储单元B)2)、数逻运算(如:计算存储单元A与存储单元B之和,结果返回存储单元C)3)、条件验证(如:如果存储单元A内数值为100,则下一条指令地址为存储单元F)4)、指令序列改易(如:下一条指令地址为存储单元F)
指令如同数据一样在计算机内部是以二进制来表示的。比如说,10110000就是一条Intel x86系列微处理器的拷贝指令代码。某一个计算机所支持的指令集就是该计算机的机器语言。因此,使用流行的机器语言将会使既成软件在一台新计算机上运行得更加容易。所以对于那些机型商业化软件开发的人来说,它们通常只会关注一种或几种不同的机器语言。
更加强大的小型计算机,大型计算机和服务器可能会与上述计算机有所不同。它们通常将任务分担给不同的CPU来执行。今天,微处理器和多核个人电脑也在朝这个方向发展。
超级计算机通常有着与基本的存储程序计算机显著区别的体系结构。它们通常由者数以千计的CPU,不过这些设计似乎只对特定任务有用。在各种计算机中,还有一些微控制器采用令程序和数据分离的哈佛体系结构(Harvard architecture)。
[编辑] 计算机的数字电路实现
以上所说的这些概念性设计的物理实现是多种多样的。如同我们所前述所及,一台存储程序式计算机既可以是巴比奇的机械式的,也可以是基于数字电子的。但是,数字电路可以通过诸如继电器之类的电子控制开关来实现使用2进制数的算术和逻辑运算。香农的论文正是向我们展示了如何排列继电器来组成能够实现简单布尔运算的逻辑门。其他一些学者很快指出使用真空管可以代替继电器电路。真空管最初被用作无线电电路中的放大器,之后便开始被越来越多地用作数字电子电路中的快速开关。当电子管的一个针脚被通电后,电流就可以在另外两端间自由通过。
通过逻辑门的排列组合我们可以设计完成很多复杂的任务。举例而言,加法器就是其中之一。该器件在电子领域实现了两个数相加并将结果保存下来—在计算机科学中这样一个通过一组运算来实现某个特定意图的方法被称做一个算法。最终,人们通过数量可观的逻辑门电路组装成功了完整的ALU和控制器。说它数量可观,只需看一下CSIRAC这台可能是最小的实用化电子管计算机。该机含有2000个电子管,其中还有不少是双用器件,也即是说总计合有2000到4000个逻辑器件。
真空管对于制造规模庞大的门电路明显力不从心。昂贵,不稳(尤其是数量多时),臃肿,能耗高,并且速度也不够快—尽管远超机械开关电路。这一切导致20世纪60年代它们被晶体管取代。后者体积更小,易于 *** 作,可靠性高,更省能耗,同时成本也更低。
集成电路是现今电子计算机的基础20世纪60年代后,晶体管开始逐渐为将大量晶体管、其他各种电器元件和连接导线安置在一片硅板上的集成电路所取代。70年代,ALU和控制器作为组成CPU的两大部分,开始被集成到一块芯片上,并称为“微处理器”。沿着集成电路的发展史,可以看到一片芯片上所集成器件的数量有了飞速增长。第一块集成电路只不过包含几十个部件,而到了2006年,一块Intel Core Duo 处理器上的晶体管数目高达一亿五千一百万之巨。
无论是电子管,晶体管还是集成电路,它们都可以通过使用一种触发器设计机制来用作存储程序体系结构中的“存储”部件。而事实上触发器的确被用作小规模的超高速存储。但是,几乎没有任何计算机设计使用触发器来进行大规模数据存储。最早的计算机是使用Williams电子管向一个电视屏或若干条水银延迟线(声波通过这种线时的走行速度极为缓慢足够被认为是“存储”在了上面)发射电子束然后再来读取的方式来存储数据的。当然,这些尽管有效却不怎么优雅的方法最终还是被磁性存储取而代之。比如说磁芯存储器,代表信息的电流可在其中的铁质材料内制造恒久的弱磁场,当这个磁场再被读出时就实现了数据恢复。动态随机存储器(DRAM)亦被发明出来。它是一个包含大量电容的集成电路,而这些电容器件正是负责存储数据电荷—电荷的强度则被定义为数据的值。
[编辑] 输入输出设备
输入输出设备(I/O)是对将外部世界信息发送给计算机的设备和将处理结果返回给外部世界的设备的总称。这些返回结果可能是作为使用者能够视觉上体验的,或是作为该计算机所控制的其他设备的输入:对于一台机器人,控制计算机的输出基本上就是这台机器人本身,如做出各种行为。
第一代计算机的输入输出设备种类非常有限。通常的输入用设备是打孔卡片的读卡机,用来将指令和数据导入内存;而用于存储结果的输出设备则一般是磁带。随着科技的进步,输入输出设备的丰富性得到提高。以个人计算机为例:键盘和鼠标是用户向计算机直接输入信息的主要工具,而显示器、打印机、扩音器、耳机则返回处理结果。此外还有许多输入设备可以接受其他不同种类的信息,如数码相机可以输入图像。在输入输出设备中,有两类很值得注意:第一类是二级存储设备,如硬盘,[[光盘]]或其他速度缓慢但拥有很高容量的设备。第二个是计算机网络访问设备,通过他们而实现的计算机间直接数据传送极大地提升了计算机的价值。今天,国际互联网成就了数以千万计的计算机彼此间传送各种类型的数据。
[编辑] 程序
简单说,计算机程序就是计算机执行指令的一个序列。它既可以只是几条执行某个简单任务的指令,也可能是可能要 *** 作巨大数据量的复杂指令队列。许多计算机程序包含有百万计的指令,而其中很多指令可能被反复执行。在2005年,一台典型的PC机可以每秒执行大约30亿条指令。计算机通常并不会执行一些很复杂的指令来获得额外的机能,更多地它们是在按照程序员的排列来运行那些较简单但为数众多的短指令。
一般情况下,程序员们是不会直接用机器语言来为计算机写入指令的。那么做的结果只能是费时费力、效率低下而且漏洞百出。所以,程序员一般通过“高级”一些的语言来写程序,然后再由某些特别的计算机程序,如解释器或编译器将之翻译成机器语言。一些编程语言看起来很接近机器语言,如汇编程序,被认为是低级语言。而另一些语言,如即如抽象原则的Prolog,则完全无视计算机实际运行的 *** 作细节,可谓是高级语言。对于一项特定任务,应该根据其事务特点,程序员技能,可用工具和客户需求来选择相应的语言,其中又以客户需求最为重要(美国和中国军队的工程项目通常被要求使用Ada语言)。
计算机软件是与计算机程序并不相等的另一个词汇。计算机软件一个较为包容性较强的技术术语,它包含了用于完成任务的各种程序以及所有相关材料。举例说,一个视频游戏不但只包含程序本身,也包括、声音以及其他创造虚拟游戏环境的数据内容。在零售市场,在一台计算机上的某个应用程序只是一个面向大量用户的软件的一个副本。这里老生常谈的例子当然还是微软的office软件组,它包括一些列互相关联的、面向一般办公需求的程序。
利用那些极其简单的机器语言指令来实现无数功能强大的应用软件意味着其编程规模注定不小。Windows XP这个 *** 作系统程序包含的C++高级语言源代码达到了4000万行。当然这还不是最大的。如此庞大的软件规模也显示了管理在开发过程中的重要性。实际编程时,程序会被细分到每一个程序员都可以在一个可接受的时长内完成的规模。
即便如此,软件开发的过程仍然进程缓慢,不可预见且遗漏多多。应运而生的软件工程学就重点面向如何加快作业进度和提高效率与质量。
[编辑] 库与 *** 作系统
在计算机诞生后不久,人们发现某些特定作业在许多不同的程序中都要被实施,比如说计算某些标准数学函数。出于效率考量,这些程序的标准版本就被收集到一个“库”中以供各程序调用。许多任务经常要去额外处理种类繁多的输入输出接口,这时,用于连接的库就能派上用场。
20世纪60年代,随着计算机工业化普及,计算机越来越多地被用作一个组织内不同作业的处理。很快,能够自动安排作业时续和执行的特殊软件出现了。这些既控制硬件又负责作业时序安排的软件被称为“ *** 作系统”。一个早期 *** 作系统的例子是IBM的OS/360。
在不断地完善中, *** 作系统又引入了时间共享机制——并发。这使得多个不同用户可以“同时”地使用机器执行他们自己的程序,看起来就像是每个人都有一台自己的计算机。为此, *** 作系统需要像每个用户提供一台“虚拟机”来分离各个不同的程序。由于需要 *** 作系统控制的设备也在不断增加,其中之一便是硬盘。因之, *** 作系统又引入了文件管理和目录管理(文件夹),大大简化了这类永久储存性设备的应用。此外, *** 作系统也负责安全控制,确保用户只能访问那些已获得允许的文件。
当然,到目前为止 *** 作系统发展历程中最后一个重要步骤就是为程序提供标准图形用户界面(GUI)。尽管没有什么技术原因表明 *** 作系统必须得提供这些界面,但 *** 作系统供应商们总是希望并鼓励那些运行在其系统上的软件能够在外观和行为特征上与 *** 作系统保持一致或相似。
除了以上这些核心功能, *** 作系统还封装了一系列其他常用工具。其中一些虽然对计算机管理并无重大意义,但是于用户而言很是有用。比如,苹果公司的Mac OS X就包含视频剪辑应用程序。
一些用于更小规模的计算机的 *** 作系统可能没用如此众多的功能。早期的微型计算机由于内存和处理能力有限而不会提供额外功能,而嵌入式计算机则使用特定化了的 *** 作系统或者干脆没有,它们往往通过应用程序直接代理 *** 作系统的某些功能。
[编辑] 应用
由电脑控制的机械在工业中十分常见 很多现代大量生产的玩具,如Furby,是不能没有便宜的嵌入式处理器
起初,体积庞大而价格昂贵的数字计算机主要是用做执行科学计算,特别是军用课题。如ENIAC最早就是被用作火炮d道计算和设计氢d时计算断面中子密度的(如今许多超级计算机仍然在模拟核试验方面发挥着巨大作用)。澳大利亚设计的首台存储程序计算机CSIR Mk I型负责对水电工程中的集水地带的降雨情形进行评估。还有一些被用于解密,比如英国的“巨像”可编程计算机。除去这些早年的科学或军工应用,计算机在其他领域的推广亦十分迅速。
从一开始,存储程序计算机就与商业问题的解决息息相关。早在IBM的第一台商用计算机诞生之前,英国J Lyons等就设计制造了LEO以进行资产管理或迎合其他商业用途。由于持续的体积与成本控制,计算机开始向更小型的组织内普及。加之20世纪70年代微处理器的发明,廉价计算机成为了现实。80年代,个人计算机全面流行,电子文档写作与印刷,计算预算和其他重复性的报表作业越来越多地开始依赖计算机。
随着计算机便宜起来,创作性的艺术工作也开始使用它们。人们利用合成器,计算机图形和动画来创作和修改声音,图像,视频。视频游戏的产业化也说明了计算机在娱乐方面也开创了新的历史。
计算机小型化以来,机械设备的控制也开始仰仗计算机的支持。其实,正是当年为了建造足够小的嵌入式计算机来控制阿波罗宇宙飞船才刺激了集成电路技术的跃进。今天想要找一台不被计算机控制的有源机械设备要比找一台哪怕是部分计算机控制的设备要难得多。可能最著名的计算机控制设备要非机器人莫属,这些机器有着或多或少人类的外表和并具备人类行为的某一子集。在批量生产中,工业机器人已是寻常之物。不过,完全的拟人机器人还只是停留在科幻小说或实验室之中。
机器人技术实质上是人工智能领域中的物理表达环节。所谓人工智能是一个定义模糊的概念但是可以肯定的是这门学科试图令计算机拥有目前它们还没有但作为人类却固有的能力。数年以来,不断有许多新方法被开发出来以允许计算机做那些之前被认为只有人才能做的事情。比如读书、下棋。然而,到目前为止,在研制具有人类的一般“整体性”智能的计算机方面,进展仍十分缓慢。
[编辑] 网络、国际互联网
20世纪50年代以来计算机开始用作协调来自不同地方之信息的工具,美国军方的贤者系统(SAGE)就是这方面第一个大规模系统。之后“军刀”等一系列特殊用途的商业系统也不断涌现出来。
70年代后,美国各大院校的计算机工程师开始使用电信技术把他们的计算机连接起来。由于这方面的工作得到了ARPA的赞助,其计算机网络也就被称为ARPANET。此后,用于ARPA网的技术快速扩散和进化,这个网络也冲破大学和军队的范围最终形成了今天的国际互联网(Internet)。网络的出现导致了对计算机属性和边界的再定义。太阳微系统公司的John Gage 和 Bill Joy就指出:“网络即是计算机”。计算机 *** 作系统和应用程序纷纷向能访问诸如网内其它计算机等网络资源的方向发展。最初这些网络设备仅限于为高端科学工作者所使用,但90年代后随着电子邮件和万维网(World Wide Web)技术的扩散,以及以太网和ADSL等网络连接技术的廉价化,互联网络已变得无所不在。今日入网的计算机总数,何以千万计;无线互联技术的普及,使得互联网在移动计算环境中亦如影随形。比如在笔记本计算机上广泛使用的Wi-Fi技术就是无线上网的代表性应用。
[编辑] 下一代计算机
尽管自问世以来数字计算机在速度和能力上有了可观的提升,迄今仍有不少课题显得超出了当前计算机的能力所及。对于其中一部分课题,传统计算机是无论如何也不可能实现的,因为找到一个解决方法的时间还赶不上问题规模的扩展速度。因此,科学家开始将目光转向生物计算技术和量子理论来解决这一类问题。比如,人们计划用生物性的处理来解决特定问题(DNA计算)。由于细胞分裂的指数级增长方式,DNA计算系统很有可能具备解决同等规模问题的能力。当然,这样一个系统直接受限于可控制的DNA总量。
量子计算机,顾名思义,利用了量子物理世界的超常特性。一旦能够造出量子计算机,那么它在速度上的提升将令一般计算机难以望其项背。当然,这种涉及密码学和量子物理模拟的下一代计算机还只是停留在构想阶段。
上述的计算机目前都还未成型,并且即使成功制造出来,它们也很有可能只会被用作解决那些普通计算机无法解决的问题。
[编辑] 计算机学科
在当今世界,几乎所有专业都与计算机息息相关。但是,只有某些特定职业和学科才会深入研究计算机本身的制造、编程和使用技术。用来诠释计算机学科内不同研究领域的各个学术名词的涵义不断发生变化,同时新学科也层出不穷。
计算机工程学 是电子工程的一个分支,主要研究计算机软硬件和二者间的彼此联系。
计算机科学 是对计算机进行学术研究的传统称谓。主要研究计算技术和执行特定任务的高效算法。该门学科为我们解决确定一个问题在计算机领域内是否可解,如可解其效率如何,以及如何作成更加高效率的程序。时至今日,在计算机科学内已经衍生了许多分支,每一个分支都针对不同类别的问题进行深入研究。
软件工程学 着重于研究开发高质量软件系统的方法学和实践方式,并试图压缩并预测开发成本及开发周期。
信息系统 研究计算机在一个广泛的有组织环境(商业为主)中的计算机应用。
许多学科都与其他学科相互交织。如地理信息系统专家就是利用计算机技术来管理地理信息。
全球有三个较大规模的致力于计算机科学的组织:英国计算机协会 (BCS);美国计算机协会(ACM);美国电气电子工程师协会(IEEE)。

目前都有哪些跨境平台呢?且先了解下这四家平台的优缺点。

Aliexpress

1)销售模式:

B2B+B2C 垂直类销售模式主要针对企业客户,75%的海外市场分布在俄罗斯,巴西,美国,西班牙和土耳其。

2)平台优势:

全中文 *** 作界面;

免费刊登大部分品类;

没有起始刊登期限;

容错性相对较高(商户评级制度周期是2个月的自然)。

3)平台劣势:

价格竞争激烈宣传推广费用高(有直通车功能运用竞价排名);

运营政策偏向大卖家和品牌商;

基本不提供客服服务;

买家对于平台的忠诚度不高。

4)平台排名影响因素:

卖家评级、价格、产品销量、产品评级。

适用商户类型: 

垂直类贸易商,工厂转型B2C,传统批发商。

速卖通的低价策略跟阿里巴巴导入淘宝的卖家客户策略有关,很多人感慨现在运营速卖通就类似于前几年的淘宝店铺。速卖通市场的侧重点在新兴市场,特别是俄罗斯和巴西。根据速卖通统计2014年的统计数据,每月登录全球速卖通服务器的俄罗斯人近1600万,平均每天完成6万多个采购订单。同时由于速卖通是阿里系列的平台产品,整个页面 *** 作中英文版简单整洁,非常适合新人上手。

总结:适合产品主推新兴市场(俄罗斯,巴西等)的卖家,产品有供应链优势且价格优势明显的卖家,最好是工厂直接销售。贸易商面对小额订单优势不明显。

Amazon

1)销售模式:

B2B模式,主要针对企业客户,业务多元化。

2)平台优势:

电子商务的鼻祖,比其他平台都要早,拥有庞大的客户群和流量优势,每个月有八千万的流量,以优质的服务著称;

具有强大的仓储物流系统和服务,尤其是北美、欧洲、日本地区。卖家只需要负责出售产品,后期的打包,物流,退换货都由亚马逊提供统一的标准的服务模式,会产生一些服务费用包括存储费,配送费和其他服务费用,也可以选择自己配送;

站点联动,比如亚马逊欧洲站点只需要有一个国家的账户就可以面向全欧洲市场销售;

提供中文注册界面。

3)平台劣势:

对卖家的产品品质要求高,企业最好;

有研发能力;

卖家必须可以开具发票;

对产品品牌有一定的要求;

手续较其他平台略复杂;

同一台电脑只能登陆一个账号;

收款银行账号需要注册自美国、英国等国家。

4)平台服务方案:

两种prime销售方案:

个人销售方案和专业销售方案。区别在于上传的产品数量以40个为分界线,个人销售方案免费但是只能上传40个之内的产品,专业销售方案需要支付3999美金的费用但是可以上传40个以上的产品。个人方案要90天才有黄金购物车buy box,专业销售方案是账号一下来就有buy box。另外据其客服介绍,在销售的额度上也是有差别的,即销售增长过快时,个人方案卖家相对比较容易受到账号审核。

增值服务:Fulfi llment by Amazon (FBA)亚马逊超过50% 的客户都是金牌会员。需要支付99美金,成为金牌会员可以享受精准的营销推送服务和快捷的物流服务,实现跨境贸易2~3天内送到客户手中。

新人注册亚马逊账号以后,后期收款,银行账号需要是美国,英国等国家。这里有几个选择,注册一家美国公司或者找一家美国代理公司,然后申请联邦税号;作为外贸人我们一般都有一些海外客户资源,不妨通过他们解决这个问题;实在不行,国内也有一些代理机构提供这样的服务。

总结:选择亚马逊平台,需要供应商有稳定可靠的产品资源,一定的资金实力,美国本土的人脉资源,并且有长期投入钻研的心态。新人注册成为亚马逊的供应商最好能接受专业的培训了解开店政策和知识,亚马逊的开店比较复杂并且有非常严格的审核制度,如果违规或者不了解规则,不仅会封店铺甚至会有法律上的风险。

eBay

1)销售模式:

B2C垂直销售。主要针对个人消费者,在发达国家比较受欢迎。

2)平台优势:

排名相对公平、专业客服支持;

新卖家可以靠拍卖曝光;

开店门槛比较低,但规则繁琐,需要研究。

3)平台劣势:

买家保护政策强势,遇到买卖争议时候多半偏向买家,卖家损失惨重;

英文界面不友好,上手 *** 作不容易;

费用不低,开店是免费的,上架产品需要收钱,商品成交费用和刊登费用共计17%;

严苛的卖家标准(针对假货等商品),遇到投诉会被封店;

一般采用paypal 付款,具有一定的风险;

审核周期长,只能拍卖,产品数量有起始限制,需要积累信誉才能越卖越多,出单周期也长,需要慢慢积累。

4)影响平台排名的因素:

卖家表现,产品数量和更新速度,产品价格。

5)适用商户类型:

贸易商、有一定B2C 经验的工厂、品牌经销商。

对于eBay的理解基本上可以等同于国内的淘宝,当年淘宝在中国市场挤出eBay后才能一统江山的。对于国际零售的外贸人来说,eBay的潜力不可小觑,因为它的核心成熟市场在美国和欧洲。

根据过来人的分析,eBay成功的关键是选品,由于eBay主要的市场是美国和欧洲,所以做eBay前最好做个市场调研,我们一般可以通过如下几个方法:

首先,通过eBay总体研究一下整个市场的行情,选择一些eBay的热销产品,从产品渠道,产品价格仔细研究,结合自己的供应链特点分析自己的优势在哪里。

其次,综合美国、欧洲市场的文化,人口,消费习惯,消费水平的因素,选择潜力的产品做eBay。研究热销产品的市场优势和未来的销售潜力,我们选择的产品品类,一旦投入精力和资本,就需要一个针对市场的利润率和持续性的考虑。

总结:产品优先。是否选择eBay 首先是产品本身的考虑,假如我们的产品目标市场在欧洲和美国,则可以选择eBay,和Amazon 比起来,它 *** 作比较简单,投入不大,适合有一定外贸货源的人 *** 作。

Wish

1)销售模式:

B2B+B2C垂直类销售。数据分析起家,主要针对移动端买家,能够根据客户的兴趣推送产品。

2)平台优势:

良好的本土化支持;

上架货品非常简单,主要运用标签进行匹配;

利润率非常高、竞争相对公平;

精准营销,点对点个性化推送,客户;

满意率较高;

Facebook 引流,营销定位清晰。

3)平台劣势:

商品审核时间过长,短则2个星期,长则2个月;

费用较高,15%商品成交费用和12%的提现费用;

物流解决方案不够成熟;

平台的买卖纠纷规则模糊。

4)影响平台排名的因素:

标签准确性,产品数量,描述和,产品价格。

5)适用商户类型:

贸易商、工厂转型B2C、品牌经销商。

根据Wish 最新的报告显示,APP 日均下载量稳定在10 万,峰值时冲到20 万,目前用户数已经突破4700 万,相应地,Wish97%的订单量来自移动端,就目前的移动互联网优势来看,Wish 未来潜力堪称巨大。

总结:Wish是一个这几年刚刚兴起的基于APP的跨境平台,最初仅仅是一个收集和管理商品的工具,主要靠价廉物美吸引客户,在美国市场有非常高的人气和市场追随者,核心的产品品类包括服装,珠宝,手机礼品等,大部分供应商来自中国,Wish 的主要竞争力就是价格特别便宜,以及精准化营销模式导致客户的满意率非常高,这也是平台短短几年发展起来的原因。

关于我们
中国制造网成立于1998年,由焦点科技股份有限公司(002315)开发和运营。截止2019年底,网站拥有超过1210万全球买家,月均买家询盘超过100万封,遍布全球220个国家和地区。

(整理_陈小墨_本文刊载于第47期《焦点视界》杂志)

下列电子称都比较好:

1、赛多利斯

赛多利斯始终走在称量技术发展的前沿。发明了:第一台铝制短臂分析天平(1870);第一台精度达一亿分之一克的超微量天平,技术这方面比其他大部分品牌电子称要高很多。

2、梅特勒-托利多

梅特勒-托利多提供的天平提供可配置的打印输出和密码保护,确保您称量结果的可跟踪性和可靠性。以 MinWeigh 为例,这是一种最小称量的特殊应用,它能使工作满足最严格的 USP 要求。

3、寺冈DIGI

寺冈RM60电子收银秤是一款采用日本技术,日本零件生产的高档收银电子秤,该秤具有外观美丽、小巧。收银管理功能强大,维护简单便宜等特点,非常适合食品零售、熟食、水果、面包等需要称重的商业零售企业使用。

4、奥豪斯

2004年新FD食品分份天平面世了。专为食品准备和处理环境设计,在那里清洁度是必需的一个指标。FD系列天平具NSF/USDA-AMS食品安全认证,精密称量技术和全不锈钢机架设计,零件可完全配置。

5、香山CAMRY

香山电子称中航电测高精度130mm传感器,称重可读性达1/60000精度,内部解析精度达1/600000,秤体具有抗静电,高频干扰,度数稳定,具有LCD白色背光液晶显示,字幕清晰易读取,具有运送保护,过载保护设计。

百度百科--赛多利斯

百度百科--梅特勒-托利多

百度百科--寺冈RM60电子收银秤

百度百科--奥豪斯电子称

百度百科--香山计数秤


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12836048.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存