云计算物联网 [会计云计算:物联网体系中“脑智能”]

云计算物联网 [会计云计算:物联网体系中“脑智能”],第1张

摘 要 物联网发展产生会计数据, 传统企业信息化模式不能够低成本且有效解决会计大数据处理的问题。社会将采用会计云计算的现代信息化模式来解决这个问题。会计云计算模式(技术模式),也是一种商业模式。企业采用会计云计算的信息化模式关键是鉴别服务提供商是否能够提供适合企业特殊的业务模式与管理模式的会计云计算。
关键词 物联网; 大数据; 会计云计算
物联网不仅仅是人机物三元世界之间的“互联互通”,关键还是人机物三者之间智能自动化的“交互与协同”。在《基于物联网中“智能物件”的智能化及其机制分析》主要介绍物联网中“感知层”物件的智能化,假如把物联网比做一个人,那“智能物件”的智能化就是手脚的智能化。而物联网中的云计算则是物联网中脑的智能化。当前,物联网与云计算一起被《中华人民共和国国民经济和社会发展第十二个五年规划纲要》列为“战略性新兴产业”。云计算只有与物联网有机结合,才能够推动“信息化和工业化深度融合”。本文着重讨论物联网云计算中核心数据——会计数据的采集、分析与应用——会计云计算的相关内容。
一、会计云计算:物联网发展之会计大数据处理的必然
(一)物联网发展产生会计大数据
随着物智能化和物与网络的联接,不仅人的行为会产生大量的数据,而且物的行为也产生区量的数据。这个数据不仅仅是数字数据等结构化数据,而且包括声音、图像等非结构化的数据。这些会计大数据除了具有一般说的大数据的3个“V”的特征外,它还具有无形性与粘性的特征。
1数据数量规模大(Volume)。物联网下产生的数据数量规模大,它已经不是过去大规模数据(large scale data)、庞大数据(enormous data)、海量数据(massive data)所能够描述的,而应该是用大数据(big data)来概括。数据规模不是用GB、TB为单位而是用PB①为单位来衡量。
2数据异构的数据(Variety)。物联网下产生数据不仅包括数字这样结构化的数据,而且主要包括声音、图像等非结构化的数据。这些数据因为业务事件的关联性,从而导致结构化数据与非结构数据更加复杂,不好处理。
3数据产生与处理实时性(Velocity)。物联网条件下数据的产生与处理一般需要实时处理。传统数据对时间处理要求不高,但是,物联网下物的行为、与人的行为一般都要求在当下完成。因此,数据的产生与处理要具有实时性。
4会计数据的无形性与粘性。当前物联网上企业采集、传输、处理的数字信息主要是非价值的数量信息。这些数据可以直接被感应器所感知,从而容易被传播;而会计数据是无形的数据,它不能够被感应器所感知。同时,会计数据是直接粘合在业务数据之中,不能够脱离业务数据而存在,脱离了业务数据就失去意义。因此,会计数据具有无形性与粘性。
(二)会计大数据的处理问题:物联网发展必须解决的问题
如果说石油是工业社会的血液,那么在物联网带来的信息化社会中,数据就是信息社会中的血液,没有数据就没有信息。但是大量的大数据如果没有得到有效的利用,就会产生数据的泛滥。这也是在信息化过程中人们经常提到的数据或信息超载。大量优质的数据和劣质数据融合在一起,可能会产生各种各样的误差和错误。如果这个数据不准确就没有任何价值。如何保证数据的可信性和质量就是物联网需要解决的首要问题。其次,物联网中产生大量的数据,如何对这些大数据进行智能的挖掘和分析,产生真正的数据价值是物联网需要解决的核心问题。最后,如何对由于物联网所产生的大量的大数据进行存储和管理,并确保这些大数据的安全,是物联网下需要解决的基础问题。
(三)传统信息化模式不能够低成本、有效解决会计大数据处理的问题
推行物联网,构建智慧地球,不是简单地将实物与互联网进行连接,不是“鼠标”加“水泥”的数字化和信息化,而是需要“更透彻的感知、更全面的互联互通、更深入的智能化”。其中,更深入的智能化是需要深入分析收集到的数据,以获取更加新颖、系统且全面的洞察力来解决特定的问题。
会计大数据的实时信息获取和全面的信息分析需要企业拥有集中大数据计算处理能力、大数据存储能力和大数据交互处理能力。依据传统企业信息化模式,企业必须购置大量的数据存储服务器、计算机、雇佣专业技术人员等,这一方面需要一次性投入大量的资金;另一方面,企业还由于不具备专业化能力而无法有效对会计大数据进行实时信息获取和全面的信息分析,获取处理会计大数据的价值。
因此,基于上述分析,企业更经济、更便捷、更快速地利用会计大数据的方案就是购买会计云计算的服务。
二、会计云计算:基于技术角度与商业模式的统一体
(一)会计云计算的概念
物联网下人机物管理控制是基于信息为核心的智能控制。由于会计大数据上面的特征所带来的利用传统数据处理条件与技术的困难,会计大数据处理必须应用会计云计算的模式。当前,关于云计算是众说纷纭,没有一致的概念。美国国家标准技术研究所(NIST)的定义是,云计算是一种对IT资源的使用模式,是对共享的可配置的计算资源(如网络、服务器、存储、应用和服务)提供无所不在的、方便的、可随需的网络访问。资源的使用和释放可以快速进行,不需要多少管理代价。我国电子学会云计算专家委员会认为,云计算是一种基于互联网的、大众参与的计算模式,其计算资源(计算能力、存储能力、交互能力)是动态、可伸缩且被虚拟化的,以服务的方式提供。这种新型的计算资源组织、分配和使用模式,有利于合理配置计算资源并提高其利用率,促进节能减排,实现绿色计算。总之,会计云计算是云计算的一个组成部分。理解会计云计算也与云计算一样,可以从技术与商业两个角度进行把握。
从信息技术的角度看,会计云计算是一个分布式计算模型,包括会计硬件平台、会计云平台和会计云服务三个层次。云计算为企业提供了“按需使用”和“按使用多少付费”的软件硬件服务模式。
从商务的角度看,会计云计算是一个724小时的全天候企业 *** 作平台(Business Operations Platform),一个能够提供完整业务处理服务的企业 *** 作平台,并能够提供多个企业间的动态业务处理。多个企业通过企业 *** 作平台组成一个完整的虚拟企业网。只有一个健全的信息链才能完成企业间相互的协作和同步,各个企业才能优化它们的业务和效益。

物联网的发展前景很不错,具体如下:
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。

原来的聚羧酸减水剂生产自动化控制不能充分满足生产工艺要求,存在的主要问题是:
1) 新设备接入非常困难;
2) 同类不同厂家设备不方便更换;
3) 匀速滴加过程中不能达到理想的控制速度,传统PID算法波动较大,常需要人工手动干预;
4) 温度控制需要人工参与控制,无法完成全自动;
工业物联网是工业40的支撑框架。物联网被称为继计算机、互联网之后,世界信息产业的第三次浪潮。它的发展离不开应用,面向工业自动化的工业互联网技术是物联网的关键组成部分[1]。工业物联网通过将具有感知能力的智能终端、无处不在的移动计算模式、泛在的移动网络通信方式应用到工业生产的各个环节,提高制造效率,把握产品质量,降低成本,减少污染,从而将传统工业提升到智能工业的新阶段[2]。
工业物联网框架中,整个系统具有强大的数据服务器,能够进行大数据的计算。在数据量足够的时候能够利用网络智能来帮助企业进行决策、配方优化和自动的设备维护等。
整个控制系统具有分布式智能能力。整个系统中,可以把数据都送到中控部分来完成;也可以将一些需要及时处理的,如温度控制等,直接由现场控制来完成。电话O1O56O14679 系统通常分为中央控制单元和分布的现场控制单元,中央控制单元由工业控制计算机充当,现场控制单元则由高可靠、抗干扰的工业级微控制器和与当前控制需求相配套的附加电路模块组成。依托微控制器的实时处理能力可以完成对现场生产进行实时调节控制,并且通过总线实现现场控制单元与中央控制单元进行数据交互,使生产过程表现出整体性、协调性,从而优化生产工艺、提高生成效率。
系统通过总线把各个独立的控制模块组织成在一起。控制模块的独立性,使得系统中各个分布的控制模块检修、升级、数量扩充都很方便,也为在生产规模扩大时控制系统扩充预留了接口。

最新的热门技术有:
1、物联网通信协议:主要解决设备的联网、互联互通,安全传输等,包括CoAP、MQTT、NB-IOT、LORA,sigfox等协议。
2、边缘计算:主要解决设备管理和数据分析、汇聚的边缘化,主要解决未来海量设备联网对带宽的冲击,对传输时延的要求,对数据隐私的保护要求。
3、雾计算:边缘各个物联网设备计算节点相互配合,完成复杂计算任务。解决设备资源的重复利用等问题。
4、大数据:分析海量设备的数据分析,支撑快速和精准决策。
5、人工智能:综合利用设备所产生的数据,应用人工智能技术,产生一些列的智能化应用,让物联网的价值充分发挥。物联网的终极目标是智能,大量的智能应用的实现依赖于物联网。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12840219.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存