随着全球信息化的浪潮,信息化产业不断发展、延伸,已经深入了众多的企业及个人,SOA系统架构的出现,将给信息化带来一场新的革命。
纵观信息化建设与应用的历程,尽管出现过XML(标准通用标记语言的子集)、Unicode、UML等众多信息标准,但是许多异构系统之间的数据源仍然使用各自独立的数据格式、元数据以及元模型,这是信息产品提供商一直以来形成的习惯。各个相对独立的源数据集成一起,往往通过构建一定的数据获取与计算程序来实现,这样的做法需要花费大量工作。信息孤岛大量存在的事实,使信息化建设的ROI(投资回报率)大大降低,ETL成为集中这些异构数据的有效工具。ETL常用于从源系统中提取数据,将数据转换为与目标系统相兼容的格式,然后将其装载到目标系统中。数据经过获取、转换、装载后,要产生应用价值,还需另外的数据展现工具予以实现,如此复杂的数据应用过程,必定产生高昂的应用成本。
结构化的数据管理尚可通过以上方法,予以实现其集成应用。在非结构化的内容方面,这些具有挑战性的问题令人生畏。内容管理的应用方案基于不同的信息化应用系统,而且大部分是纵向的以组织部门为界限的。在内容管理市场中,经常使用来自不同厂商的产品来提供这些解决方案。即使是同一个厂商的产品,相互之间的功能也是经常重叠,并且无法集成。
随着信息化建设的深入,不同应用系统之间的功能界限已趋于模糊。同时企业资源计划系统和协同商务系统,又需要商业智能的分析展现数据提供用户 *** 作依据。
在激烈竞争且多变的市场环境下,企业的管理模式很难固化,应用传统的信息化软件,当企业要做出一些改动时需要面对巨大的挑战。
SOA系统架构的出现,信息化变革
微软大中华区服务部总经理辛儿伦介绍说,从上世纪60年代应用于主机的大型主机系统,到80年代应用于PC的CS架构,一直到90年度互联网的出现,系统越来越朝小型化和分布式发展。2000年WebService出现后,SOA被誉为下一代Web服务的基础框架,已经成为计算机信息领域的一个新的发展方向。
SOA的出现给传统的信息化产业带来新的概念,不再是各自独立的架构形式,能够轻松的互相联系组合共享信息。
可复用以往的信息化软件。基于SOA的协同软件提供了应用集成功能,能够将ERP、CRM、HR等异构系统的数据集成。
松散耦合方式,只要充分了解业务的进程,就可以不用编写一行代码,通过流程图实现一套我们自己的信息系统。就像已经给你准备好了砖瓦和水泥,只需要想好盖什么样的房子就可以轻松的盖起。加快开发速度,并且减少了开发和维护的费用。软件将所有的管理提炼成表单和流程,以记录管理的内容,指定过程的流转方向。
更简便的信息和数据集成。信息集成功能可以将散落在广域网和局域网上的文档、目录、网页轻松集成,加强了信息的协同相关性。同时,复杂、成本高昂的数据集成,也变成了可以简单且低成本实现的参数设定。创建了完全集成的信息化应用新领域。
在具体的功能实现上,SOA协同软件所实现的功能包括了知识管理、流程管理、人事管理、客户管理、项目管理、应用集成等,从部门角度看涉及了行政、后勤、营销、物流、生产等。从应用思想上看,SOA协同软件中的信息管理功能,全面兼顾了贯穿整个企业组织的信息化软硬件投入。尽管各种IT技术可以用于不同的用途,但是信息管理并没有任意地将信息分为结构化或者非结构化的部分,因此ERP等结构化管理系统并不是信息化建设的全部;同时,信息管理也没有将信息化解决方案划分为部门的视图,因此仅仅以部分为界限去构建软件应用功能的思想未必是不可撼动的。基于SOA的协同软件与ERP、CRM等传统应用软件相比,关键的不同在于它可以在合适的时间、合适的地点并且有正当理由向需要它提供服务的任何用户提供服务。
1)传感网络是一个存在严重不确定性因素的环境。广泛存在的传感智能节点本质上就是监测和控制网络上的各种设备,它们监测网络的不同内容、提供各种不同格式的事件数据来表征网络系统当前的状态。然而,这些传感智能节点又是一个外来入侵的最佳场所。从这个角度而言,物联网感知层的数据非常复杂,数据间存在着频繁的冲突与合作,具有很强的冗余性和互补性,且是海量数据。它具有很强的实时性特征,同时又是多源异构型数据。因此,相对于传统的TCP/IP网络技术而言,所有的网络监控措施、防御技术不网络安全和其他相关学科领域面前都将是一个新的课题、新的挑战。
2)被感知的信息通过无线网络平台进行传输时,信息的安全性相当脆弱。
其次,当物联网感知层主要采用RFID技术时,嵌入了RFID芯片的物品不仅能方便地被物品主人所感知,同时其他人也能进行感知。如何在感知、传输、应用过程中提供一套强大的安全体系作保障,是一个难题。
3)同样,在物联网的传输层和应用层也存在一系列的安全隐患,亟待出现相对应的、高效的安全防范策略和技术。
只是在这两层可以借鉴TCP/IP网络已有技术的地方比较多一些,与传统的网络对抗相互交叉。综上所述,物联网除了面对传统TCP/IP网络、无线网络和移动通信网络等传统网络安全问题之外,还存在着大量自身的特殊安全问题,并且这些特殊性大多来自感知层。
很不错。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量。
技术标准的统一与协调
传统互联网的标准并不适合物联网。物联网感知层的数据多源异构,不同的设备有不同的接口,不同的技术标准;网络层、应用层也由于使用的网络类型不同、行业的应用方向不同而存在不同的网络协议和体系结构。建立的统一的物联网体系架构,统一的技术标准是物联网正在面对的难题。
区别数据中台是物联中台的子集。数据中台是一套可持续“让企业的数据用起来”的机制,一种战略选择和组织形式,是依据企业特有的业务模式和组织架构,通过有形的产品和实施方法论支撑,构建一套持续不断把数据变成资产并服务于业务的机制。
物联中台随着近几年物联网的发展,特别是在2020年提出的新基建,七个关键词中有四个是跟物联网产业紧密相关,这是一个新的发展机遇,也是企业改革的重要节点。十四五规划中,设备接入、多系统数据融合互联互通,是物联网的重点内容,也是产业互联网中大数据、人工智能应用的基础,也是当下普遍存在的痛点, 这些痛点容易形成信息孤岛,使企业不会达到真正意义上的智慧管理,解决这些问题需要大量的人力、财力、时间等成本,是大部分企业无法承担的。基于这种情况,IOTOS物联中台作为一款技术型平台型产品因此而诞生了。什么是IOTOS物联中台?专业解释:按照目前普遍的说法,中台分为6类:数据中台、业务中台、算法中台、技术中台、研发中台、组织中台。物联中台是爱投斯(IOTOS)公司于2020年8月份率先提出的。这里“物”不仅仅是设备设施等有形的物体,而是广义上的概念。万物互联的对象包含了人、设备、系统、算法、服务。物联中台相对于数据中台层次上更为抽象和高级,通常包含了采集平台、通信中台和数据中台的全部特性,除了支持数据分析、处理、交易等抽象业务服务外,还涉及采集和通信。采集平台需要提供系统设施等数据的协议解析、数据异构处理;通信中台需要能提供局域网、公网以及混合网络下数据的通信链路传递实现对数据应用对位置无感。
简述Inter,物联网,云端计算之间的区别以及联络 因特网(Inter),物联网都是通讯网路,将装置进行连线,就好比物联网是高速公路与英特网是大马路,大马路可以走人走脚踏车走汽车,高速路只走汽车。云端计算是区别于本地计算的一种概念,是分散式计算的一种技术名称。
云端计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云端计算平台的一个普通应用,物联网和云端计算之间是应用与平台的关系。
物联网的发展依赖于云端计算系统的完善,从而为海量物联资讯的处理和整合提供可能的平台条件,云端计算的集中资料处理和管理能力将有效的解决海量物联资讯储存和处理问题。
人工智慧是程式演算法和大资料结合的产物。
而云计算是程式的演算法部分,物联网是收集大资料的根系的一部分。
可以简单的认为:人工智慧=云端计算+大资料(一部分来自物联网)
随着物联网在生活中的铺开,它将成为大资料最大,最精准的来源。
云端计算通俗理解:1、通过网路上传到云储存东西,无需储存装置有网路便可读取。像银行
2、可以通过云端计算,有些软体无需安装便可使用,比如直接通过云写文件,不用安装word。像家里用电不用自己发电,通过电网购买。
云的使用对自己电脑的配置实用减少,而物联网是本地电脑和伺服器资讯互换,处理资讯使用的是本地电脑的资源处理东西。
物联网是客观世界在Inter上的一种应用;云端计算是建立在Inter上的一种分散式技术服务模式;三网融合是将Inter、电信网、广电网业务融合在一起的应用技术及业务模式。
希望对你有用。
随着社会迅速发展,人类逐渐进入大资料的时代,而物联网与云端计算作为近年来的热点,受到了业内不少人士的关注。据业界人士分析,大资料的前景与物联网以及云端计算这两者之间的关系非常密切,那么,真像业界人士所说的那样它们之间存在着不一样的关系呢?下面,我们就来了解一下大资料与物联网、云端计算之间的关系吧。
大资料概念
巨量资料(big data),或称大资料、海量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软体工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。“大资料”是由数量巨大、结构复杂、型别众多资料构成的资料集合,是基于云端计算的资料处理与应用模式,通过资料的整合共享,交叉复用,形成的智力资源和知识服务能力。
大资料市场格局
具体意义上来讲,早在20世纪90年代“资料仓库之父”的Bill Inmon便提出了“大资料”的概念。大资料之所以在最近走红,主要归结于网际网路、移动装置、物联网和云端计算等快速崛起,全球资料量大大提升。可以说,移动网际网路、物联网以及云端计算等热点崛起在很大程度上是大资料产生的原因。
我们通过分析,形象的知道大资料与移动网际网路、物联网以及传统网际网路的关系。物联网,移动网际网路再加上传统网际网路,每天都在产生海量资料,而大资料又通过云端计算的形式,将这些资料筛选处理分析,提前出有用的资讯,这就是大资料分析。
大资料与云端计算
云端计算(cloud puting)是基于网际网路的相关服务的增加、使用和交付模式,通常涉及通过网际网路来提供动态易扩充套件且经常是虚拟化的资源。近几年,云端计算的概念受到了学术界、商界,甚至 的热捧,一时间云端计算无处不在,这真让同时代其他的IT技术相形见绌,无地自容。
本质上,云端计算与大资料的关系是静与动的关系;云端计算强调的是计算,这是动的概念;而资料则是计算的物件,是静的概念。如果结合实际的应用,前者强调的是计算能力,或者看重的储存能力;但是这样说,并不意味着两个概念就如此泾渭分明。大资料需要处理大资料的能力(资料获取、清洁、转换、统计等能力),其实就是强大的计算能力;另一方面,云端计算的动也是相对而言,比如基础设施即服务中的储存装置提供的主要是资料储存能力,所以可谓是动中有静。
如果资料是财富,那么大资料就是宝藏,而云计算就是挖掘和利用宝藏的利器!没有强大的计算能力,资料宝藏终究是镜中花;没有大资料的积淀,云端计算也只能是杀鸡用的宰牛刀。
大资料与物联网
物联网是一个基于网际网路、传统电信网等资讯承载体,让所有能够被独立定址的普通物理物件实现互联互通的网路。
大资料与物联网之间的关系是相铺相成的。物联网产生大资料。美国人前几年医院一年产生500个数据,IMT1。4TB资料等各种的资料通过感测器产生,也有在网上直接产生的,我们现在处于大资料时代,物联网一分钟可以产生非常多的东西,苹果下载2万余次,一分钟会上传10万条新微博,全世界物联网上虚拟网路上,产生了大量的资料。
物联网产生的大资料与一般的大资料有不同的特点。物联网的资料是异构的、多样性的、非结构和有噪声的,更大的不同是它的高增长率。物联网的资料有明显的颗粒性,其资料通常带有时间、位置、环境和行为等资讯。物联网资料可以说也是社交资料,但不是人与人的交往资讯,而是物与物,物与人的社会合作资讯。
除此之外,大资料助力物联网,不仅仅是收集感测性的资料,实物跟虚拟物要结合起来。今天北京交通堵塞,但是并不知道堵塞原因,如果 释出讯息和市民微博释出讯息结合起来就知道发生什么事,物联网要过滤,过滤要有一定模式。
基于大资料与物联网,云端计算之间的关系
物联网重点突出了感测器感知的概念,同时它也具备网路线路传输,资讯储存和处理,行业应用介面等功能。而且也往往与网际网路共用伺服器,网路线路和应用介面,使人与人(Human ti Human ,H2H),人与物(Human to thing,H2T)、物与物( Thing to Thing,T2T)之间的交流变成可能,最终将使人类社会、资讯空间和物理世界(人机槠)融为一体。
大资料目前尚没有统一的定义,比较有代表性的是3V 定义,即认为大资料需满足3 个特点:规模性(Volume)、多样性(Variety)和高速性(Velocity)。
以云端计算为代表的网际网路新应用的兴起,表明网际网路基础服务无论从硬体,软体还是资料资讯都在向集中和统一的方向发展。也就是说,未来的大资料还将具备一个新的特性-统一性(Unity)。
你也可以参考物联商业网。
因特网是一个数据网际网路;物联网是将现实世界的事物通过感测器等连线到网际网路形成的一个管理网路;云端计算是一种大规模的计算服务平台,它可以为其他网路提供计算服务;三网融合是将电信网、电视网及网际网路融合在一起的综合应用网路。
希望对你有用。
云端计算与网格计算的概念
首先,究竟什么是云端计算(Cloud Computing)呢?钱教授指出,云就是网际网路——做网路的似乎总是把网路抽象成云;云端计算就是利用在Inter中可用的计算系统,能够支援网际网路各类应用的系统。云端计算是以第三方拥有的机制提供服务,为了完成功能,使用者只关心需要的服务,这是云端计算基本的定义。
相对于网格计算(Grid Computing)和分散式计算,云端计算拥有明显的特点:第一是低成本,这是最突出的特点。第二是虚拟机器的支援,使得在网路环境下的一些原来比较难做的事情现在比较容易处理。第三是镜象部署的执行,这样就能够使得过去很难处理的异构的程式的执行互 *** 作变得比较容易处理。第四是强调服务化,服务化有一些新的机制,特别是更适合商业执行的机制。
那么网格计算的特点又是什么呢?
网格计算有了十几年的历史。网格基本形态是什么?是跨地区的,甚至跨国家的,甚至跨洲的这样一种独立管理的资源结合。资源在独立管理,并不是进行统一布置、统一安排的形态。网格这些资源都是异构的,不强调有什么统一的安排。另外网格的使用通常是让分布的使用者构成虚拟组织(VO),在这样统一的网格基础平台上用虚拟组织形态从不同的自治域访问资源。此外,网格一般由所在地区、国家、国际公共组织资助的,支援的资料模型很广,从海量资料到专用资料以及到大小各异的临时资料集合,在网上传的资料,这是网格目前的基本形态。
云端计算与网格计算区别何在
可以看出,网格计算和云端计算有相似之处,特别是计算的并行与合作的特点;但他们的区别也是明显的。主要有以下几点:
首先,网格计算的思路是聚合分布资源,支援虚拟组织,提供高层次的服务,例如分布协同科学研究等。而云计算的资源相对集中,主要以资料中心的形式提供底层资源的使用,并不强调虚拟组织(VO)的概念。
其次,网格计算用聚合资源来支援挑战性的应用,这是初衷,因为高效能运算的资源不够用,要把分散的资源聚合起来;后来到了2004年以后,逐渐强调适应普遍的资讯化应用,特别在中国,做的网格跟国外不太一样,就是强调支援资讯化的应用。但云计算从一开始就支援广泛企业计算、Web应用,普适性更强。
第三,在对待异构性方面,二者理念上有所不同。网格计算用中介软体遮蔽异构系统,力图使使用者面向同样的环境,把困难留在中介软体,让中介软体完成任务。而云计算实际上承认异构,用映象执行,或者提供服务的机制来解决异构性的问题。当然不同的云端计算系统还不太一样,像Google一般用比较专用的自己的内部的平台来支援。
第四,网格计算用执行作业形式使用,在一个阶段内完成作用产生资料。而云计算支援持久服务,使用者可以利用云端计算作为其部分IT基础设施,实现业务的托管和外包。
第五,网格计算更多地面向科研应用,商业模型不清晰。而云计算从诞生开始就是针对企业商业应用,商业模型比较清晰。
总之,云端计算是以相对集中的资源,执行分散的应用(大量分散的应用在若干大的中心执行);而网格计算则是聚合分散的资源,支援大型集中式应用(一个大的应用分到多处执行)。但从根本上来说,从应对Inter的应用的特征特点来说,他们是一致的,为了完成在Inter情况下支援应用,解决异构性、资源共享等等问题。
那么,网格计算和云端计算有没有可能取长补短、互为补充呢?钱教授提到,如果这两者结合起来,也许可以聚合大量分散的资源,从而支援各种各样的大型集中应用以及分散的应用。
最后,钱教授还谈到,在云端计算技术方面,有三个需要关注的问题。第一是安全,因为要想作为公共基础设施必须取得使用者的充分信任。第二是标准化,不能再走中介软体的老路。第三是开源,要走开放的平台,这样才有发展。
简明的描述,看了有茅塞顿开的感觉。
观点一:网格计算主要关注如何把一个任务分配到它所需要的资源上(一般来说是一个远端可用的),在这里一个大的计算任务可以被分成多个小任务,然后被分配到这些伺服器上执行;而云计算则强调把资源动态的从硬体基础架构上产生出来,以适应工作任务的需要,云端计算可以支援网格计算,也可以支援非网格计算。(简单理解,即动态产生的计算资源是来自一台伺服器还是多台,是否使用了网格计算的演算法。本人的理解)
观点二:网格计算与云端计算主要有三点区别,第一,网格主要是通过聚合式分布的资源,通过虚拟组织提供高层次的服务,而云计算资源相对集中,通常以资料中心的形式提供对底层资源的共享使用,而不强调虚拟组织的观念;第二,网格聚合资源的主要目的是支援挑战性的应用,主要面向教育和科学计算,而云计算一开始就是用来支援广泛的企业计算、web应用等;第三,网格用中介软体遮蔽异构性,而云计算承认异构,用提供服务的机制来解决异构性的问题。
网格计算与云端计算的关系如下表所示。
表 1 网格计算与云端计算的比较
网格计算
云端计算
目标
共享高效能运算力和资料资源,实现资源共享和协同工作
提供通用的计算平台和储存空间,提供各种软体服务
资源来源
不同机构
同一机构
资源型别
异构资源
同构资源
资源节点
高效能运算机
伺服器/PC
虚拟化检视
虚拟组织
虚拟机器
计算型别
紧耦合问题为主
松耦合问题
应用型别
科学计算为主,计算密集
资料处理为主,资料密集
使用者型别
科学界
商业社会
付费方式
免费( 出资)
按量计费
标准化
有统一的国际标准OGSA/WSRF
尚无标准,但已经有了开放云端计算联盟OCC
网格计算走的是学院派的路子:在概念上争论多年,在体系结构上三次伤筋动骨,在标准规范上花费了大量的心力,所设定的目标又非常远大--要在跨平台、跨组织、跨信任域的极其复杂的异构环境 享资源和协同解决问题,所要共享的资源也是五花八门--从高效能运算机、资料库、装置到软体、甚至知识;云端计算走的是现实派的路子:暂时不管概念、不管标准,Google云端计算与Amazon云端计算的差别非常大,云端计算只是对他们以前做的事情的新的共同的时髦叫法;所共享的储存和计算资源暂时仅限于某个企业内部,省去了许多跨组织协调的问题;以Google为代表的云端计算在内部管理运作方式上的简洁一如其介面,能省的功能都省了,Google档案系统甚至不允许修改已经存在的档案,大大降低了实现难度,却借助其无与伦比的规模效应释放前所未有的能量。
网格计算与云端计算的关系,就像是OSI与TCP/IP之间的关系:ISO制定的OSI(开放系统互联)网路标准,考虑得非常周到,也异常复杂,在多年之前就考虑到了会话层和表示层的问题。很有远见,但过于阳春白雪了,实现的难度和代价也非常大。当OSI的一个简化版--TCP/IP冒出来之后,将七层协议简化为四层,内容也大大精简,因而迅速取得了成功。在TCP/IP一统天下之后多年,语义网等问题才被提上议事日程,开始为TCP/IP补课,增加其会话和表示的能力。因此,OSI是学院派,TCP/IP是现实派。OSI是TCP/IP的基础,TCP/IP又推动了OSI的发展。不是成者为王、败者为寇的问题,而是滚动发展的问题。
1.物联网产生大资料,大资料助力物联网。目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机、网际网路之后冲击现代社会的第三次资讯化发展浪潮。物联网在将物品和网际网路连线起来,进行资讯交换和通讯,以实现智慧化识别、定位、跟踪、监控和管理的过程中,产生的大量资料也在影响着电力、医疗、交通、安防、物流、环保等领域商业模式的重新形成。物联网握手大资料,正在逐步显示出巨大的商业价值。
2.大资料是高速跑车,云端计算是高速公路。在大资料时代,使用者的体验与诉求已经远远超过了科研的发展,但是使用者的这些需求却依然被不断地实现。在云端计算、大资料的时代,那些科幻片中的统计分析能力已初具雏形,而这其中最大的功臣并非工程师和科学家,而是网际网路使用者,他们的贡献已远远超出科技十年的积淀。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)