怎么看待我国计划3年内新建机场超30个?

怎么看待我国计划3年内新建机场超30个?,第1张

交通运输部24日介绍,今年1月,交通运输部印发《关于服务构建新发展格局的指导意见》,制定了三年行动计划。举措包括新增城际铁路和市域铁路运营里程3000公里,新改建高速公路里程25万公里,新增民用机场30个以上。
近年来,借助互联网技术高速发展的东风,大数据、云计算、互联网、物联网技术蓬勃发展,齐头并进。民航产业的发展进入快车道,作为民航业配套设施的机场建设也越来越被重视,将传统机场融合数字化管理等技术与应用也渐渐明朗。
“智慧机场”的发展将会加剧民航机场间的竞争,给旅客的出行将会带来更大的便利,但对机场管理者而言,是要求加强管理水平,提高服务水平,对机场的管理将会是一次变革。“智慧机场”是建立在网络运行环境基础上的,通过新一代信息技术,运用无线传输、大数据的挖掘、云计算、信息安全等关键技术,实现点到点的时时互联,采集处理信息,实现业务自动化、服务个性化、功能人性化、管理流程化的模式创新的过程。并以科技推动创新,以科技节能减排,以科技推动民航产业健康发展。以建立起功能更加完善、 *** 作更加便捷、生产更加节能环保、运行更加安全高效的机场运行网络体系为目标。
当前,以信息技术为引领,以“智慧”为重要特征的新一轮科技革命和产业变革方兴未艾。对于机场行业来说,仅仅针对某项具体功能升级智慧程度还远远不够,智慧机场建设需要有一整套严谨的制度体系作支撑,并且要作为一项系统工作来抓。智慧机场建设不仅仅是利用科技和信息手段改进机场现有的各项安全、运行、服务工作,更要形成智慧建设、智慧发展的思维模式,让智慧建设的思维贯穿机场运营的各个环节。只有这样,才能让智慧机场建设之路越走越宽,最终实现以智慧打造民航业的全新未来。
新一轮科技革命和产业变革正在改变民航业的发展形态,智慧机场建设也方兴未艾。无论是基础设施建设的规模、质量,还是以5G为代表的新一代信息技术的应用,中国均处于世界前列,再加上近10年来中国民航高速发展积累的运行大数据,都为智慧机场的建设提供了有力支撑。未来,智慧机场的落成与实施将会给人们生活运输带来妙不可言的好处。

行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)

本文核心数据:全球物联网市场规模、全球物联网连接数量、全球物联网下游行业分布

处于市场验证期

物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等 信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换
和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发 展历史悠久,可分为三个阶段:

物联网连接数超120亿个

根据全球移动通信系统协会(GSMA)统计数据显示,2010-2020年全球物联网设备数量高速增长,复合增长率达19%;2020年,全球物联网设备连接数量高达126亿个。“万物物联”成为全球网络未来发展的重要方向,据GSMA预测,2025年全球物联网设备(包括蜂窝及非蜂窝)联网数量将达到约246亿个。万物互联成为全球网络未来发展的重要方向。

下游制造业/工业占比最大

从下游领域来看,根据IoT
Analytics的数据,2020年全球物联网行业下游占比中,制造业/工业占比22%排在首位,其次是交通/车联网,占比15%。智慧能源、智慧零售、智慧城市、智慧医疗和智能物流分别占比14%、12%、12%、9%和7%,排在第3至7位。

2020年物联网链接内容90%属低功耗、广域网领域

2020年整个物联网90%连接属于低功耗、广域网领域。万物互联趋势下,传统移动蜂窝网络的高使用成本和高功耗催生了专为物联网连接设计的低功耗广域连接技术,对应中低速率应用场景,拥有广覆盖、扩展性强等特征,更符合室外、大规模接入的物联网应用。

2026年市场规模接近155万亿美元

根据知名国际信息技术数据公司lDC的测算,2019年全球loT市场规模为6860亿美元,到2022年,这一数字将突破万亿美元;与此同时,2019年全球通过万物互联传输的数据规模已达到14ZB,2025年传输规模则将达到80ZB。在loT行业本身的从全球来看,目前全球物联网相关的技术、标准、产业、应用、服务处于高速发展阶段。整体上物联网核心技术持续发展,标准体系正在构建,产业体系处于建立和完善过程中。移动互联网连接和工业互联网连接是未来发展的主要趋势,根据lDC的测算数据,2020年全球物联网市场规模为7490亿美元,年平均增长率为1220%;预计2026年,全球物联网市场规模将会接近155万亿美元。

以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。

物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。

在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;

在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。

一、智能交通

物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;

高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。

社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。

该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。

二、智能家居

智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;

通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;

智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;

智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。

三、公共安全

近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。

美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。

利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。

趋势和特征

物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。

物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。

物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。

环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。

在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。

通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。

可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。

通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。

此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。

未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。

通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。

市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。

以上内容参考 百度百科-物联网

摘 要:随着信息技术的不断发展,在互联网技术上又延伸和扩展出了物联网技术,物联网技术具有十分重要的经济和社会前景,引起了很多国家和政府的重视。本文就是在这个背景下首先讨论了物联网的概念和基本技术,然后描述了其应用领域,最后并对物联网发展的问题做了分析。
关键词:物联网 射频识别 M2M
中图分类号:TN91 文献标识码:A 文章编号:1672-3791(2012)05(b)-0023-01所谓物联网,就是利用射频自动识别技术,实现物体和物体之间能够识别的网络。EPC global的Auto-ID中心的提出的定义是:把所有物品通过射频识别等信息窗设备与互联网连接起来,实现智能化识别与管理。从本质上来说物联网是互联网技术的一种延伸,涵盖信息主要包含了射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等传感设备。设备之间按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。其中主要包括了两种概念:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。
1 物联网涉及关键技术
11射频识别技术(RFID)
RFID射频识别技术是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别工作无须人工干预,可工作于各种恶劣环境。RFID技术可识别高速运动物体并可同时识别多个标签, *** 作快捷方便。在物联网中重要起“使能”(Enable)作用。
射频识别技术应用非常广泛,目前产品:RFID读写器、RFID标签等已经广泛应用了,典型应用范围:门禁控制、航空包裹识别、文档追踪管理、包裹追踪识别、畜牧业、产品防伪、票证管理、汽车晶片防盗器、停车场管制、生产线自动化等。
12传感器技术
传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。因此可以说,传感器是人类五官的延长,又称之为电五官。在我们生活中声控灯、自动门、遥控器等都是传感器的典型应用。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
13M2M
M2M是机器对机器(machine-to-machine)通信的简称。是多种不同类型的通信技术有机的结合在一起实现机器之间通信、机器控制通信、人机交互通信以及移动互联通信等。M2M让机器、设备、应用处理过程与后台信息系统共享信息,并与 *** 作者共享信息;它提供了设备实时的在系统之间、远程设备之间或和个人之间建立无线连接,实现数据传输。
14其他技术
物联网还包含了其他如纳米技术、智能潜入技术以及工业化和信息化的融合技术等等在此就不一一详述了。
2 物联网应用领域
21城市管理
通过物联网可以实现智能交通,物联网技术可以自动检测并报告公路、桥梁的“健康状况”,还可以避免过载的车辆经过桥梁。在交通控制方面,可以通过检测设备,在道路拥堵或特殊情况时,系统自动调配红绿灯,并可以向车主预告拥堵路段、推荐行驶最佳路线。
22公共安全
通过物联网与摄录技术综合起来,我们可以实现人脸自动识别技术、车牌自动识别技术、指纹识别技术等可以有效增加公安机关的办案效率,增强社会安全保障。
23家电行业
将家庭所有家电家具实现物联网连接,可以实现真正的智能化家庭。典型的例子是海尔曾经通过物联网网桥(WSNBridge),实现了用户通过手机、互联网、固话与家中灯光、窗帘、报警器、电视、空调、热水器等电器设备的沟通,将物联概念与用户的生活实际紧密联系起来,使之成为了一种像水、电、气一样的用户居家生活的基础应用服务;海尔的全球首款“物联网冰箱”具有网络可视电话功能、浏览资讯、播放视频等多项生活与娱乐功能,让原本属于生活电器的冰箱成为一个娱乐中心。
24医护行业
医护领域的物联网应用主要在人体的监护和生理参数的测量等方面,利用传感器可以对人体的各种状况进行监控,将数据传送到各种通信终端上。在美国曾经实现了在鞋垫上设置传感器对有特殊病情老人通过物联网进行监控,最终获得有效数据实现最佳治疗效果。
25物流行业
物流行业是使用物联网技术比较早的行业,由RFID等技术和移动手持设备组成物联网后,基于感知的货物数据便可在全球范围内监控货物的流通状态,可以提供全面的货物信息以及物流跟踪信息,能够实时的获得货物以及航运信息,降低物流风险并提高风险的控制能力。
3 物联网技术存在问题
31物联网跟风较多,应用较小
物联网的价值不是一个可传感的网络,而是必须各个行业参与进来进行应用,不同行业,会有不同的应用,也会有各自不同的要求,这些必须根据行业的特点,进行深入的研究和有价值的开发。现阶段的物联网同样现处于跟风这一种现象,很多的企业盲目的炒作物联网,而没有形成具体的应用。物联网的体系基本形成需要一些应用形成示范,更多的传统行业感受到物联网的价值,这样才能有更多企业看清楚物联网的意义。
32物联网标准难以统一
互联网能够快速发展很大原因取决于互联网标准的成功,现阶段的物联网没有形成统一的标准,很难形成产业的规模的应用,对于推动物联网的普及起到很大的阻碍。因此,标准的建立至关重要。
33大规模应用普及需要较长时间
没有标准,整个行业的发展就要受到制约,同样,对于物联网的普及也需要经过很长的时间,而时间的成本,对于快速发展的企业来讲还是有非常大的影响。
34物联网大企业部署较快
从现状来看,提到物联网都是比较高端的人群或者是企业,对于物联网的部署,只有具有一定的实力的企业能做或者承接物联网项目,如中电信、中移动等,对于小企业来讲,物联网的应用还没有具体的涉及到,以至于出现可望可及的现象。
35技术环境不成熟
虽然互联网的发展为物联网迈进了重要的一步,物联网不仅仅需要互联网的支撑,还需要许多如通信、企业应用软硬件的支撑,对于如何实现这些网络的融合,从技术的角度来讲,需要涉及到大量跨行业、跨企业的协条,导致了物联网在技术方面还存在很大方面的缺
36全社会对物联网的内涵尚未取得共识
虽然物联网受到全社会的普遍关注,但目前物联网的概念和技术架构缺乏统一的清晰描述,全社会对物联网的内涵尚未取得共识。物联网从广义上认为是深度信息化,狭义上认为是此深度信息化的承载网络,这其中的“深度还需要业内人士共同探讨,不断发展完善。

行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)

本文核心数据:零售领域物联网普及率、零售领域中使用物联网的原因

物联网下游行业占比12%

零售业一直是许多新兴技术应用落地的首选,根据IoT
Analytics的数据,智能零售领域在2020年全球物联网下游细分市场中占比12%,仅位于工业、交通与能源之后。

物联网普及率达94%

物联网为零售业所带来的位置跟踪、个性化信息、库存维护等功能,能够为零售企业在企业安全、库存管理、决策建议等方面提供一定帮助。——在微软调查的公司中,94%的零售企业表示已经应用了该技术,并且有88%的组织表示,至少有一个项目已经达到了“使用”阶段。

“学习”阶段项目占比最高

尽管,物联网能够为零售企业带来管理与生产上效率的提高,但到目前为止,各地零售企业对于物联网与其零售业务的结合仍旧保持保守态度,因而从物联网项目的所处阶段的占比来看,目前为止,处于“学习”、“使用”和“试验/验证”阶段的零售物联网项目分别占总零售物联网项目的28%、26%和24%,而在“购买”阶段的物联网项目则仅有22%。

生产流程监控是物联网在制造业中的最大原因

总体而言,物联网用于提高运营效率,增强客户直接接触点。接近一半的公司表示,供应链优化是一个关键的用例,超过三分之一的公司将库存优化作为其使用该技术的主要方式。监控和安全是物联网在零售环境中的首要应用——不仅用于店内防损,还可以通过整个供应链监控商品。不太常见的是,各组织也在利用物联网进行直接的客户互动,包括自动结账和个性化的折扣,这是基于可自前端获得的运营效率。物联网也打消了零售公司在安全方面的顾虑。

解决方案的沿用是第一大问题

在零售业领域,由于零售行业产业链环节较多,因而物联网与传统零售行业进的融合无法一蹴而就,许多企业仍在继续沿用传统的零售行业解决方案。此外,引入物联网带来的便利有时并不能直接解决传统零售行业中现存的问题也成为了零售物联网全面应用路径上的一大挑战。

以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12851075.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存