各大云平台物联网相关产品对比分析

各大云平台物联网相关产品对比分析,第1张

本文主要对阿里云、腾讯云、百度云和华为云提供的相关物联网产品进行对比,用于分析各大云平台在物联网方面的布局和实现。

本文主要从各大云平台的官网相关资料进行对比,对比项也没有覆盖物联网的各个方面。
阿里云的物联网相关产品由于在实际项目中使用的比较多,所以比较了解,相对其他3个云平台,阿里云在物联网方面的布局走的比较早,无论是硬件开发、设备组网、边缘计算、设备接入及管理、数据流转、数据处理、数据存储、数据可视化等等方面,阿里云都有相关产品可以提供,而其他3个平台或多或少都有缺项。在阿里云、百度云、华为云上都能看到专门对物联网的布局,而在腾讯云上面则看不到。

物联网平台指AloT产业链中负责连接的网络,承担着将终端设备、边缘、云端连接起来的职责。随着AloT产业发展,物联网设备数量快速增加,设备种类、设备应用场景日益丰富,更灵活的无线网络连接能力将是市场的必然选择。

目前全球有超过 600 多家物联网平台,物联网平台参与主体数量有很多,主要可以区分为通信厂商、互联网厂商、IT 厂商、工业厂商、物联网厂商、新锐企业。每种类型平台功能特点略有不同。
通信厂商主要包括运营商和通信设备供应商。如ctwing物联网市场,联通物联,中移物联,主要特点是汇聚电信能力和互联能力,向合作伙伴提供统一规范的服务。以ctwing为例,将物联网与5G、AI 、边缘计算、区块链、大数据等新技术深度融合,并基于中国电信CTWing50打造的物联网一站式购物平台,成为中国电信物联网产业生态的汇集地,提供丰富的5G、芯片模组、应急消防、安防监控、追踪定位、智慧能源、智慧农业、智慧养老等细分行业的产品服务,为合作伙伴提供产品快速上架通达省市的渠道。
互联网厂商主要包括阿里巴巴、腾讯、百度、京东等企业,这类企业在生态构筑和 AI 技术上有优势。如阿里云提供云管边端等基础产品接入及技术赋能、行业解决方案合作与实施、软硬件销售、营销推广、需求对接等快速商业变现通道。
IT 厂商主要包括浪潮、IBM、中国通服等企业,这类企业在 IT 方面有深刻理解。如用友利用物联网、AI、数字孪生等技术搭建的平台,拥有精智物联平台、精智云盒、精智时序数据库YonTimesDB+流式计算引擎、精智数据魔方、精智工业大脑等产品。
工业厂商则包括富士康、三一集团、施耐德电气、西门子、徐工集团等工业企业为主,平台以工业垂直能力为主。如通用电气是连接机器、数据、人员以及其他资产,使用分布式计算、大数据分析、资产数据管理和 M2M 通信的领先技术,提供广泛的工业微服务,使企业能够提供生产力。
物联网厂商平台主要根植于物联网时代,为物联网而生的平台企业,主要包括创通联达、联想懂的通信、涂鸦智能、小匠物联、萤石云等。如联想采用互联网云平台架构设计,依托物联网、机器视觉识别等技术,接入感知设备采集用户侧数据,建立统一的数据中心和设备管理中心,形成统一的应用服务中台,提升了设备状态感知。
新锐企业大多由 IT、OT、CT 领域经验丰富的专家建立,往往专注在某个领域。如瀚云工业物联网平台面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、d性供给、高效配置。

摘 要 边缘计算是 5G 重要新技术能力,通过低延时、大流量、高性能服务促进新应用创新。边缘计算能力的实施面临物理、网络、协议、应用、管理等多层面的威胁,急需新安全防护能力支撑。该解决方案利用机器学习、诱骗防御、UEBA 等技术,针对边缘计算的业务和信令特点设计,结合“云管边端”多层面的资源协同和防护处理,实现立体化的边缘计算安全防护处理。

关键词: 多接入移动边缘计算;边缘云;安全防护;机器学习;诱骗防御;用户及实体行为分析

内容目录 :

0 引 言

1 5G 及边缘计算

2 边缘计算面临的风险

21 基础设施层安全风险

22 电信服务层安全风险

23 终端应用层安全风险

24 管理面安全风险

25 租户服务面安全风险

26 MEC 安全威胁总结

3 “云管边端”安全防护技术

31 功能架构

32 主要功能

4 “云管边端”安全防护实践

41 应用场景

5 结语

“云管边端”协同的边缘计算安全防护解决方案是恒安嘉新针对边缘计算发展提出的全面安全解决方案。方案综合考虑边缘计算产业中用户、租户、运营者多方面的要求,通过多级代理、边缘自治、编排能力,提供高安全性和轻量级的便捷服务。整体方案提供边缘计算场景的专业防护;提供多种部署方式;在提供高性价比服务的同时为边缘云计算输送安全服务价值。

5G 是驱动创新互联网发展的关键技术之一。5G 边 缘 计 算(Multi-access Edge Computing, MEC)提供了强大的云网一体化基础设施,促使应用服务向网络边缘迁移。MEC 的一大特点是同时连通企业内网和运营商核心网,其安全性直接影响企业内网安全以及运营商基础设施安全。随着边缘计算在各行各业商用,MEC 和生产管理流程逐渐融合,安全问题将日益突出, 对于 MEC 的安全防护需求日益强烈 。

采用标准 X805 模型,MEC 安全防护由 3 个逻辑层和 2 个平面组成。3 个逻辑层是基础设施层(分为物理基础设施子层、虚拟基础设施子层)、电信服务层和终端应用层。2 个平面为租户服务面和管理面。基于此分层划分识别得到如下 MEC 安全风险。

21 基础设施层安全风险

与云计算基础设施的安全威胁类似,攻击者可通过近距离接触硬件基础设施,对其进行物理攻击。攻击者可非法访问服务器的 I/O 接口, 获得运营商用户的敏感信息。攻击者可篡改镜像, 利用虚拟化软件漏洞攻击边缘计算平台(Multi- access Edge Computing Platform,MEP) 或者边缘应用(APPlication,APP) 所在的虚拟机或容器, 从而实现对 MEP 平台或者 APP 的攻击。

22 电信服务层安全风险

存在病毒、木马、蠕虫攻击。MEP 平台和APP 等通信时,传输数据被拦截、篡改。攻击者可通过恶意APP 对MEP 平台发起非授权访问, 导致用户敏感数据泄露。当 MEC 以虚拟化的虚拟网络功能(Virtual Network Function,VNF)或者容器方式部署时,VNF 及容器的安全威胁也会影响 APP。

23 终端应用层安全风险

APP 存在病毒、木马、蠕虫、钓鱼攻击。APP 和 MEP 平台等通信时,传输数据被拦截、篡改。恶意用户或恶意 APP 可非法访问用户APP,导致敏感数据泄露等。另外,在 APP 的生命周期中,它可能随时被非法创建、删除等。

24 管理面安全风险

MEC 的编排和管理网元(如 MAO/MEAO) 存在被木马、病毒攻击的可能性。MEAO 的相关接口上传输的数据被拦截和篡改等。攻击者可通过大量恶意终端上的 APP,不断地向用户APP 生命周期管理节点发送请求,实现 MEP 上的属于该用户终端 APP 的加载和终止,对 MEC 编排网元造成攻击。

25 租户服务面安全风险

对于存在的病毒、木马、蠕虫、钓鱼攻击, 攻击者近距离接触数据网关,获取敏感数据或篡改数据网管配置,进一步攻击核心网;用户面网关与 MEP 平台之间传输的数据被篡改、拦截等。

26 MEC 安全威胁总结

基于对上述风险的认识,可以看出:MEC跨越企业内网、运营商服务域、运营商管理域等多个安全区域,应用了基于服务化接口的多类 5G 专用接口和通信协议,网络中存在面向应用、通信网、数据网的多维度认证授权处理, 传统的简单 IDS、IPS、防火墙等防护方式很难满足 MEC 安全防护的要求,需要新的具备纵深防御能力的专业性的解决方案处理。

31 功能架构

“云管边端”安全防护解决方案总体功能架构如图1 所示。解决方案利用机器学习、诱骗防御、UEBA 等技术,针对边缘计算的业务和信令特点设计,结合“云管边端”多层面的资源协同和防护处理,实现立体化的边缘计算安全防护处理。解决方案由五个层面的功能组件实现,分别为可视化层、中心安全云业务层、边缘安全编排层、安全能力系统层、数据采集层。
图 1 MEC 安全防护解决方案功能架构

在可视化层,产品通过 MEC 安全防护统一管理平台提供安全资源管理、安全运维管理、安全运营管理、统一门户、租户门户、安全态势感知服务。在中心安全云业务层,产品通过MEC 安全云实现基础数据资源统管、安全运算资源统管、安全能力编排。

边缘安全能力层部署适应虚拟化基础环境的虚拟机安全等服务能力,这些能力由 DDoS 攻击防护系统、威胁感知检测系统、威胁防护处理系统、虚拟防火墙系统、用户监控及审计系统、蜜网溯源服务系统、虚拟安全补丁服务系统、病毒僵木蠕钓鱼查杀系统以及边缘侧 5G 核心安全防护系统。

边缘安全编排层由安全微服务和引擎管理微服务构成。数据采集层主要提供信令面和数据面的流量采集,并对采集到的信令面流量进行分发,对用户面流量进行筛选和过滤。

32 主要功能

“云管边端”安全防护解决方案提供如下八个方面的特色安全功能。

(1)基本安全

提供基础的安全防护功能,包括防欺骗、ACL 访问控制、账号口令核验、异常告警、日志安全处理等能力。

(2)通信安全

提供针对 MEC 网络的通信安全防护能力, 包括防 MEC 信令风暴、防 DDoS、策略防篡改、流量镜像处理、恶意报文检测等能力。

(3)认证审计

提供针对 MEC 网络的认证审计和用户追溯安全防护能力,可以处理 5GC 核心网认证交互、边缘应用和服务的认证交互、以及 5G 终端的认证交互,并可以进行必要的关联性管理和分析。

(4)基础设施安全

提供对 MEC 基础设施的安全防护能力, 包括关键基础设施识别,基础设施完整性证实,边缘节点身份标识与鉴别等。并可以提供Hypervisor 虚拟化基础设施的安全防护处理,保障 *** 作系统安全,保障网络接入安全。

(5)应用安全

提供完善的 MEC 应用安全防护能力,包括APP 静态行为扫描、广谱特征扫描和沙箱动态扫描,保护 APP 和应用镜像安全。

(6)数据安全

提供多个层面的 MEC 数据安全防护能力。在应用服务中提供桌面虚拟镜像数据安全能力, 避免应用数据安全风险。在身份认证过程中, 结合 PKI 技术实施双因子身份认证,保护认证信息安全。通过安全域管理和数据动态边界加密处理,防范跨域数据安全风险。

(7)管理安全

提供完善的管理安全防护能力。包括安全策略下发安全防护,封堵反d Shell、可疑 *** 作、系统漏洞、安全后门等常规管理安全处理,以及针对 MEC 管理的 N6 及 N9 接口分析及审计。实现对于管理风险的预警和风险提示。

(8)安全态势感知

通过对资产、安全事件、威胁情报、流量进行全方位的分析和监测,实现针对 MEC 网络的安全态势感知。

41 应用场景

“云管边端”安全防护解决方案不仅为基础电信企业提供 5G 场景下 MEC 基础设施的安全保护能力和监测 MEC 持续运营安全风险的工具,而且赋能基础电信企业向 MEC 租用方提供安全保护增值服务,推动 5G 安全产业链上下游协同发展。整体解决方案支持私有边缘云定制部署,边缘云合作运营,安全服务租用等多种商业模式。

企业通过部署“云管边端”安全防护解决方案,能够有效实现将网络安全能力从中心延伸到边缘,实现业务快速网络安全防护和处理,为 5G 多样化的应用场景提供网络安全防护。因此,企业更有信心利用 5G 部署安全的智能化生产、管理、调度系统,从而丰富工业互联网应用,促进工业互联网智能化发展 。

42 主要优势

“云管边端”安全防护解决方案具备如下优势:

(1)专为边缘计算环境打造,整体方案在分级架构、安全编排、安全性能、协议分析等多方向优化,提供 MEC 最佳防护方案。

(2)多种模式适应各类应用场景需求,企业可根据自身需求和特点灵活选择。可以选择租用模式,无需专业技术人员即获得最新 MEC 安全技术服务。也可以选择定制模式,深度研发适配企业特性的安全防护处理。

(3)高效融合 MEC 各个层面的安全保护能力,降低综合安全防护成本,支持多种收费模式,降低入门门槛,让MEC 安全保护不留死角。

(4)创造安全服务价值,安全策略自动化以及与网络和云服务能力的联动,深度优化MEC 安全运维管理,创造边缘云服务安全价值。

本解决方案当前已在多个实际网络中部署,实现对于智慧港口、智慧工厂、智慧医疗、工业互联网等重要信息化应用资产的安全防护。例如,随着 5G 网络的发展,可以实施对于工业大型工程设备的 5G 远程控制改造,实现远程实时控制,完成高清视频回传,从而提升生产效率。但远控过程中的各类网络安全风险可能威胁到生产稳定性,造成重大损失。通过本解决方案的实施,可以保障 5G 远程控制改造实施,保护生产运行的高效运转。

引用文本:张宝山,庞韶敏“ 云管边端”协同的边缘计算安全防护解决方案[J]信息安全与通信保密,2020(增刊1):44-48

张宝山,硕士,高工,主要研究方向为核心网、边缘计算、网络功能虚拟化、物联网、网络安全等; 庞韶敏 ,硕士,高工,主要研究方向为核心网、边缘计算、物联网、网络安全、主机安全等。 选自《信息安全与通信保密》2020年增刊1期(为便于排版,已省去原文参考文献)

云和物联网:完美匹配
在典型的物联网部署中,许多物联网传感器(几十个、数百个或数千个)收集数据并将其发送到中心位置进行分析。在许多情况下,这个中心位置就是云。
借助云管理,移动运营商可以通过任何设备和网络连接从任何地方访问其传感器数据。例如,如果附着在浮标上的海洋传感器散布在墨西哥湾,运营商可以在平板电脑上提取数据以评估维护问题或运行数据分析。如果没有云,则跨大区域和不同设备来聚合物联网数据要复杂得多。
许多物联网提供商还提供物联网平台,即SaaS程序,可帮助物联网管理者从远处管理其连接的设备和数据。云提供商允许公司以最低的成本存储和处理大量数据,从而为大数据分析打开了大门。
物联网服务的云计算与边缘计算
虽然云对于大多数物联网部署来说是不可或缺的,但最近一些功能的就地处理又有所恢复。边缘计算将一些数据处理保留在物联网传感器和终端设备所在的网络边缘。这在一些物联网应用中至关重要,如无人驾驶汽车,在这些应用中,数据分析和决策的任何延迟都有可能导致撞车。

有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。

1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。

国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。

国外有亚马逊、IBM、SAP、

谷歌、GE、西门子、博世等。

通过以上名单可以发现,这些公司的特点。

这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。

2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。

3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。

物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?

最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。

以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。

不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型

1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。

物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。

在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。

因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。

物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰

伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。

中心化的物联网架构存在三个问题。

一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。

其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。

第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。

简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。

边缘算力的应用场景到底有多广阔?

边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)

第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。

无人驾驶技术:

无人驾驶

智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:

一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。

二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。

三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。

其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。

机会很大

物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。

通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点

连接数告诉增长是物联网行业发展基础

物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。

物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。

物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。

物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等

物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12867773.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存