专题推荐 - 农业传感器与物联网专题

专题推荐 - 农业传感器与物联网专题,第1张

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

楼宇节能需要运用物联网技术,将数据用传感器设备实时感知采集,通过无线网络把楼宇与互联网相连接,实现信息的交换与管控。帮助用户实现照明智能管控、温度智能管控、能耗智能管控、环境监测管控、等内容,对楼宇空间进行智慧化控制、监控、管理,可以有效和高效地使用电力可以节省资金。
天环PACOM智能建筑能耗系统能帮助用户实现照明智能管控、温度智能管控、能耗智能管控、环境监测管控、空间智能管控及人员和资产定位等内容,对楼宇空间进行智慧化控制、监控、管理。系统在安全性上对系统进行多层加密和黑名单机制,能够提供物联网所需的工业级、政府级、多层级的安全性。以及在平台上加入了AI算法,使其具备超强人工智能算法,通过不断的数据采集、分析、挖掘,能够对整体建筑系统运行进行预测性维护,同时针对用户体验数据、环境数据等进行自动控制策略优化,无感知智控。

聚羧酸减水剂生产控制系统的工业物联网框架设计与实现

严海蓉1,王子明2
(1北京慧物科联科技有限公司,北京 100124,2北京工业大学,北京 100124)

摘要:工业物联网既提供了在生产过程中获取并控制聚羧酸减水剂生产设备的信息的方式,也提供了基本的网络架构,方便系统集成和扩展。该框架在分析了聚羧酸减水剂生产流程的基础上被划分为设备控制层、通讯层和应用服务层。根据实际应用需求,描述了工业物联网架构可以方便接入设备,贴近工艺完成软件,并让机器具有智能。企业应用案例表明该系统能够有效地实现生产状态跟踪监测和生产设备自动控制的目标,对进一步研究工业物联网技术和解决方案具有一定的参考价值。
关键词:工业物联网;自动化控制系统;聚羧酸减水剂生产设备
中图分类号:TP273 文献标识码:A

Theindustrial IOT design of automatic control system for polycarboxylate superplasticizer
YAN Hairong1, Wang Ziming2
(1.Beijing Sophtek Corp,2 Beijing University of Technology,Beijing 100124,China)

0引言
原来的聚羧酸减水剂生产自动化控制不能充分满足生产工艺要求,存在的主要问题是:
1) 新设备接入非常困难;
2) 同类不同厂家设备不方便更换;
3) 匀速滴加过程中不能达到理想的控制速度,传统PID算法波动较大,常需要人工手动干预;
4) 温度控制需要人工参与控制,无法完成全自动;
电话 扣扣53O934955
工业物联网是工业40的支撑框架。物联网被称为继计算机、互联网之后,世界信息产业的第三次浪潮。它的发展离不开应用,面向工业自动化的工业互联网技术是物联网的关键组成部分[1]。工业物联网通过将具有感知能力的智能终端、无处不在的移动计算模式、泛在的移动网络通信方式应用到工业生产的各个环节,提高制造效率,把握产品质量,降低成本,减少污染,从而将传统工业提升到智能工业的新阶段[2]。
工业物联网框架中,整个系统具有强大的数据服务器,能够进行大数据的计算。在数据量足够的时候能够利用网络智能来帮助企业进行决策、配方优化和自动的设备维护等。
整个控制系统具有分布式智能能力。整个系统中,可以把数据都送到中控部分来完成;也可以将一些需要及时处理的,如温度控制等,直接由现场控制来完成。系统通常分为中央控制单元和分布的现场控制单元,中央控制单元由工业控制计算机充当,现场控制单元则由高可靠、抗干扰的工业级微控制器和与当前控制需求相配套的附加电路模块组成。依托微控制器的实时处理能力可以完成对现场生产进行实时调节控制,并且通过总线实现现场控制单元与中央控制单元进行数据交互,使生产过程表现出整体性、协调性,从而优化生产工艺、提高生成效率。
系统通过总线把各个独立的控制模块组织成在一起。控制模块的独立性,使得系统中各个分布的控制模块检修、升级、数量扩充都很方便,也为在生产规模扩大时控制系统扩充预留了接口。
因此工业物联网框架才能彻底解决传统控制的一些问题,真正贴合聚羧酸减水剂生产工艺。
1 系统概要设计
根据聚羧酸减水剂的生产过程,可以将聚羧酸减水剂自动化控制系统分为设备控制层、通讯层和应用服务层,系统框架如图1所示。
图1 系统框架图
图1中,应用服务层主要实现对生产过程中实时数据和生产状态的跟踪监测和管理,同时提供各种应用UI接口,用户可以通过使用计算机、手机等手持设备登录客户端来访问或获取所需要的数据或信息等,从而实现物联网的厂内处处可访问。一旦将企业网络与公共网络连接,用户登录后就可以实现生产数据随处可访问。
应用服务层中还包括有控制逻辑层,控制逻辑层通过与 *** 作人员进行交互,并且汇集、分析、存储和处理生产过程中的实时数据和生产状态,实现生产过程的逻辑控制。
通讯层主要实现设备控制层、控制逻辑层和应用服务层之间的可靠传输。
设备控制层主要实现原始数据的采集与分析、数据和状态的上传、控制指令的接收等。嵌入式控制器内的智能逻辑将和聚羧酸减水剂生产各工序要求的生产工艺(加料、滴加、温度调节、pH调节)等紧密贴合,并与控制逻辑层相互通讯完成所要求的工艺精密控制。
整个系统采用划分层次的设计思路使得系统具有很好的可移植性,各种传感器可以灵活的接入系统。这样新系统的总体实现或者旧系统的扩展可以采用“搭积木”的方式完成构建。

2 系统详细设计
根据以上设计的系统工业物联网框架和体系结构,本研究将以北京某公司的具体项目为例,详细介绍该系统的设计和应用过程。
21设备接入示例
基于工业物联网架构的设计,可以很容易的接入各种设备。比如如图2所示的聚羧酸减水剂自动化控制系统接入了一个服务器、一个 *** 作员站、若干显示器、2个控制站,若干现场设备和用户手机。
图2基于工业物联网架构的设备接入实例
服务器负责存储生产数据,包括生产 *** 作日志和生产过程数据,便于生成台帐和报表。也可以与各种财务、资产管理软件连接。同时,负责承载起局域网与大网络的连接工作。
*** 作员站上运行的软件,方便 *** 作员在中控室来 *** 作现场各种阀门、电机等开停,从而按照工艺过程完成生产。
控制站自动获得 *** 作员 *** 作命令来控制现场设备,比如阀门等,同时也自动从现场设备获取各种状态,比如称重数据等传给控制室控制机器。
现场设备是包括传感器和各类执行器,比如秤、阀门等自动工作。
图中的手机设备是为了表示出工业物联网框架可以任意接入设备的特性。比如,在该框架下,巡视人员可以通过手机进行接入,完整现场紧急控制一些阀门的开或者是关。经理等就可以通过手机来查看每天生产数据。
同时,对于不同厂家的同类设备,该工业物联网框架也有较好的兼容能力。
22贴合工艺的软件设计
软件包括生产线管理软件和工业现场控制软件。生产线管理软件工作于生产管理计算机,主要实现工艺管理、配方管理;通过网络,根据权限,可调出 *** 作人员的现场 *** 作记录,完成对现场的远程管理。工业现场控制软件工作于车间级服务器中,主要通过与工艺以及现场布置相同的画面显示,使得 *** 作人员便于 *** 作,以实现现场设备仪表信号的采集、处理,配方管理和现场数据实时界面显示和控制等功能。
图3 聚羧酸合成控制生产工艺示意图

根据实际生产过程和自动化控制系统的特点,当前聚羧酸生产过程分大单体预化过程、 A、B料预混过程、A、B料计量罐加料过程、碱计量罐加料过程、A、B料滴加过程、反应釜搅拌控制过程、反应釜温度控制过程,针对不同的过程,分别实现其控制目标,从而达到完整生产过程的控制。
下面以工艺中的A、B料计量罐滴加控制为例来说明软件设计功能。
首先控制系统为用户提供友好的A、B滴加控制对话框,方便用户可视化 *** 作。用户可以选择采用以前输入的备用方案进行控制,也可以选择自己新输入方案进行空控制。总之都能够根据配方在规定的时间内,将指定质量的物料匀速加入到对应的反应釜中。
图4 启动已存备用方案滴加
图5 启动自定义方案采用三阶段定量滴加示例

其次控制系统采用分段式匀速滴加模式(图5),启动滴加时,控制系统计算出三个阶段分别的预期流速。控制系统实时读取当前计量罐的质量,并根据当前时间,计算出实时流速。控制系统根据实时流速和预期流速的差值,控制调节阀的开启度,从而控制滴加速度。
图6 滴加控制效果示意图(多阶段不同流速)

最后,显示出实时滴加工作界面(图6),工作工作误差一般不大于1%。
23机器学习的智能能力
原来控制系统由于没有采用物联网框架,数据存储量不充分,从而无法让机器自主学习。各种设备常常需要人来手工调整,设定最高最低值;控制过程需要人工进行干预,来辅助机器完成自动控制。
而现有的工业物联网架构,拥有了专门的数据服务器,从而可以存储较大量的数据。而对于这些数据进行分析而产生的机器智能不可小觑。
比如,以前温度控制时,只能根据人工经验设定一个固定的值。反应釜的材质、容量、夹套、搅拌电机、搅拌桨叶等设备本身因素会影响调温结果。
而往往由于冬夏的自来水、室内温度、物料温度、反应剧烈程度等也会影响调温结果。因此在控制系统安装后要进行长时间的人工参与测试来努力找到一个合适的最大最小值。而测试时间毕竟短,这个值一旦这个值固定后,后续生产时就无法轻易改变,为此生产 *** 作员常需要来观测这个温度控制过程并且来参与控制,否则很难达到理想的控制效果。
再比如对于滴加控制的PID算法,往往由设计者人为给定一个PID参数,也无法完全适应实际设备磨损等情况。
而基于工业物联网架构的控制时,可以在服务器端运行一个智能控件,由它来自动学习历史调温或者滴加流速的变化情况,不断训练软件,让软件重新找到合适的上下调节阈值,这样才可以真正达到完全自动化。整个系统拥有了自己不断学习的机器智能。

3 系统测试结果
基于工业物联网的聚羧酸减水剂自动化控制系统在设计和开发完成后,在北京某工厂的实际生产线上投入使用。目前,该系统运行安全、稳定,大部分功能已经实现,达到了预期的效果。
在系统正式投入使用后,对系统的工业现场控制软件、生产线管理软件和嵌入式控制器进行了长时间的测试。针对实现过程中遇到的问题做了大量的调试工作。下面以实现滴加A料为例对系统的测试进行描述。
*** 作人员在控制室通过点击用户 *** 作界面的A料滴加阀门按钮进行滴加参数的配置,如图7所示。 *** 作人员需要输入的参数为滴加质量和滴加时间,同时系统也支持分阶段滴加。在点击开始滴加按钮后,服务器会向嵌入式控制器发送滴加A料指令。
图7 滴加A料配置界面
嵌入式控制器在接收到服务器下发的滴加A料指令后,会进行自动化控制,实现A料的滴加 *** 作,具体效果如图8所示。
图8 5个反应釜同时进行A料滴加曲线示意图
图8中5条不同颜色的线分别表示5个不同计量罐的A料滴加曲线,系统支持多个计量罐同时进行滴加 *** 作。左侧上升的直线表示向计量罐加入A料的过程,系统支持多个计量罐同时加料,质量控制精确,定量加料的误差在01%以内。右侧下降的曲线表示滴加A料过程,曲线的斜率即为速度。由图可知,系统基本上能够实现匀速滴加A料过程,同时,系统也支持连续4小时的滴加 *** 作,时间误差在1分钟左右。
基于工业物联网的聚羧酸减水剂自动化控制系统投入运行后,提高了聚羧酸减水剂的产品质量,提高了工艺生产的自动化程度,大大减轻了 *** 作人员的劳动强度,提高了企业的竞争力。
4 结束语
本研究基于工业物联网架构设计的聚羧酸减水剂自动化控制系统对聚羧酸减水剂生产过程可以进行高效的跟踪管理,在实际应用中具有重要作用。它使聚羧酸减水剂生产设备具备了一定的数据感知、处理和通信能力,从而为企业制定更好的工艺流程提空帮助。同时,它也促使聚羧酸减水剂生产管理过程更加科学和精细化。该系统的成功开发设计为工业物联网在化工行业的推广打下了基础,做出了积极地探索。

参考文献:
[1]LIANG Wei,ZENGPeng Internet of Things Technology and Application Oriented IndustrialAutomation[J] Instrument Standardization & Metrology,2010:21-24[梁炜,曾鹏面向工业自动化的物联网技术与应用[J]仪器仪表标准化与计量,2010:21-24]
[2] KANGShilong,DU Zhongyi,LEIYongmei,ZHANG Jing Overview of industrial Internet of Things[J]Internet of Things Technologies,2013:80-82,85[康世龙,杜中一,雷咏梅,张璟工业物联网研究概述[J]物联网技术,2013:80-82,85]
[3] BIDongzhen The Design and Realization of Industrial Sewing Machines System Basedon the IoT[D]Shandong: Qingdao University,2012[毕东贞基于物联网的工业缝纫机系统的设计与实现[D]山东:青岛大学,2012]
[4]ZHANG Ximin,WANGGuoqing,DINGXuenian Development of an Internet home automation system[J] Chinese Journalof Scientific Instrument,2009,30(11):2423-2427[张喜民,王国庆,丁学年基于因特网的远程家居自动控制系统研制[J]仪器仪表学报,2009,30(11):2423-2427]
[5]WU Jiaqiang Tracking and quality monitoring system based on IOT industrial forsteel pipe[J] Journal of Mechanical &ElectricalEngineering,2013,30(11):1335-1339[伍家强基于工业物联网的钢管跟踪及质量监测系统[J]机电工程,2013,30(11):1335-1339]
[6]LI Nan,LIUMin,YANJunwei Frame work for industrial internet of things oriented to steel continuouscasting plant MRO[J] Computer Integrated Manufacturing Systems,2011,17(2):413-418[李楠,刘敏,严隽薇面向钢铁连铸设备维护维修的工业物联网框架[J]计算机集成制造系统,2011,17(2):413-418]

物联网农业智能测控系统所技术特点:
(1)监控功能系统:根据无线网络获取的植物生长环境信息,如监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。其它参数也可以选配,如土壤中的PH值、电导率等等。信息收集、负责接收无线传感汇聚节点发来的数据、存储、显示和数据管理,实现所有基地测试点信息的获取、管理、动态显示和分析处理以直观的图表和曲线的方式显示给用户,并根据以上各类信息的反馈对农业园区进行自动灌溉、自动降温、自动卷模、自动进行液体肥料施肥、自动喷药等自动控制。
(2)监测功能系统:在农业园区内实现自动信息检测与控制,通过配备无线传感节点,太阳能供电系统、信息采集和信息路由设备、配备无线传感传输系统,每个基点配置无线传感节点,每个无线传感节点可监测土壤水分、土壤温度、空气温度、空气湿度、光照强度、植物养分含量等参数。其它参数也可以选配,如土壤中的PH值、电导率等等。信息收集、负责接收无线传感汇聚节点发来的数据、存储、显示和数据管理,实现所有基地测试点信息的获取、管理、动态显示和分析处理以直观的图表和曲线的方式显示给用户,并根据种植作物的需求提供各种声光报警信息和短信报警信息。
(3)实时图像与视频监控功能:农业物联网的基本概念是实现农业上作物与环境、土壤及肥力间的物物相联的关系网络,通过多维信息与多层次处理实现农作物的最佳生长环境调理及施肥管理。但是作为管理农业生产的人员而言,仅仅数值化的物物相联并不能完全营造作物最佳生长条件。视频与图像监控为物与物之间的关联提供了更直观的表达方式。比如:哪块地缺水了,在物联网单层数据上看仅仅能看到水分数据偏低。应该灌溉到什么程度也不能死搬硬套地仅仅根据这一个数据来作决策。因为农业生产环境的不均匀性决定了农业信息获取上的先天性弊端,而很难从单纯的技术手段上进行突破。视频监控的引用,直观地反映了农作物生产的实时状态,引入视频图像与图像处理,既可直观反映一些作物的生长长势,也可以侧面反映出作物生长的整体状态及营养水平。可以从整体上给农户提供更加科学的种植决策理论依据。

主要功能:数据采集,数据处理,数据通信,信息查询,数据管理,泵站控制,预防报警,作物生长环境参数(土壤水分、养分、空气温湿度、光照、辐射、CO2、风速、风向、雨量等)实时采集和监控。
信息采集1、通过各种传感器采集各类信息,其中包括温湿度、二氧化碳、土壤水分、土壤温度、电导、PH、光量子、光照度、风速、风向、雨量计等2、一个基地可以建多个节点,每个节点可以根据需要连接多个传感器,各个节点可以互联,也可单独传到主控室,进而通过网络传到你的电脑或手机里。

三维物联网概念

三维物联网是运用虚拟现实技术构建的全三维数字化物联网管理平台,结合互联网技术、射频识别传感器、视频监控系统、视频分析系统,以及数据仓库技术和数据挖掘技术,突破以人工管理为主的常规园区管理模式,解决常规管理模式中各系统各自独立,支离破碎的问题,同时解决传统模式中信息量少、流通不畅、缺乏综合分析、难以共享、应对突发事件反应迟缓、安全隐患较大等问题,实现物联网时代全面感知各种信息,让常规园区管理更加智能便捷。

三维物联网关键技术

RFID射频识别技术——物联网的“嘴巴”

RFID射频识别技术作为一种通信技术,通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。

传感器技术——物联网的“耳朵”

作为接收器,它能感受规定的被测量,例如温湿度、电压、电流,并按照一定的规律转换成可用输出信号。

AI及云计算技术——物联网的“大脑”

云计算是把一些相关网络技术和计算机发展融合在一起的产物。它提供动态的可伸缩的虚拟化的资源的计算模式,具有十分强大的计算能力,高达每秒10万亿次的运算能力,可以模拟核爆炸、预测气候变化和市场发展趋势。同时它也具有超强的存储能力,具有计算和存储能力。

而相比云计算,AI技术就是真正意义上模仿人类大脑学习与思考,研究领域有智能机器人、虚拟现实技术与应用、工业过程建模与机器学习等。

无线网络技术——物联网传输中的“高速公路”

当物体与物体“交流”的时候,就需要高速、可进行大批量数据传输的无线网络,无线网络的速度决定了设备连接的速度和稳定性。若无线网络的速率太低,就会出现设备反应滞后或者连接失败等问题。

目前,我们使用的大部分网络属于4G,4G给通信市场带来的变革是十分巨大的,但是在我们即将面世的5G面前都不算什么,据悉,5G的峰值理论传输速度可达每秒数10Gb,举例而言就是一部超高清画质**可在1秒之内下载完成,作为第五代移动通信技术,加上国内5G近两年的政策推动,也将把移动市场推到一个全新的高度,而物联网相关领域的发展也因其得到很大的突破。

三维物联网应用领域有哪些?

智慧城市

智慧城市以最大化优化城市功能为目标,促进经济增长,同时利用智能科技与数据分析来提高城市居民的生活质量。智慧城市基于物联网、云计算等新一代信息技术以及维基、社交网络、综合集成法等工具和方法的应用,营造了有利于创新涌现的生态。更为重要的是,智慧城市利用信息和通信技术让城市生活更加智能,通过高效利用资源,节约成本、能源,提升生活质量,减少对环境的负面影响,推动了低碳经济的发展。

智慧园区

园区应用物联网的理件技术可以实现各照明设备电气参数的集中采集,能耗计量和统计、故障声光报警、设备防盗,快速地图定位故障点等。园区中的各种需要获得的有用信息包持温度、湿度,照度等,都可用传感得技术获得,传感器技术获得这些信息后把它们转换成与之对应的输出信号,这样就可以使人们能更好地控制自己的生活和工作环境,最终可以使园区实现智能化。

工业物联网

物联网不仅是智能制造的关键技术之一,也是制造业企业实现数字化转型的重要途径;借助物联网技术,企业可以对多种类型的数据进行高效采集和整合分析,为客户提供远程故障诊断、预测性运维等增值服务,并通过数据价值深度发掘实现数据变现新的收入增长,变产品制造商为综合服务提供商。制造领域应用于物联网技术,主要体现在数字化以及智能化的工厂改造上,包括工厂机械设备监控和工厂的环境监控。未来应提高工业设备的数字化水平,挖掘原有设备数据的价值,提高设备间的协同能力。

建筑施工管理

随着建筑业的高速发展,施工事故也频繁发生,不仅夺去了无数建设者的生命,也为国家和企业造成了重大的经济损失。安全问题始终贯穿于工程建设始终,但是影响施工安全的因素错综复杂,管理的不规范和技术的不成熟都有可能导致施工的安全问题。物联网在施工管理中的应用,可以一定程度上避免安全事故的发生,保证施工安全。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12868097.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存