变频器的历史是怎么样的?

变频器的历史是怎么样的?,第1张

早期通用变频器如东芝TOSVERT-130系列、FUJI FVRG5/P5系列,SANKEN SVF系列等大多数为开环恒压比(V/F=常数)的控制方式.其优点是控制结构简单、成本较低,缺点是系统性能不高,比较适合应用在风机、水泵调这场合。具体来说,其控制曲线会随着负载的变化而变化;转矩响应慢,电视转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降稳定性变差等。对变频器U/F控制系统的改造主要经历了三个阶段;
第一阶段:
1 八十年代初日本学者提出了基本磁通轨迹的电压空间矢量(或称磁通轨迹法)。该方法以三相波形的整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成二相调制波形。这种方法被称为电压空间矢量控制。典型机种如1989年前后进入中国市场的FUJI(富士)FRN5OOOG5/P5、 SANKEN(三垦)MF系列等。
②引人频率补偿控制,以消除速度控制的稳态误差
③基于电机的稳态模型,用直流电流信号重建相电流,如西门子MicroMaster系列,由此估算出磁链幅值,并通过反馈控制来消除低速时定子电阻对性能的影响。
④将输出电压、电流进行闭环控制,以提高动态负载下的电压控制精度和稳定度,同时也一定程度上求得电流波形的改善。这种控制方法的另一个好处是对再生引起的过电压、过电流抑制较为明显,从而可以实现快速的加减速。
之后,1991年由富士电机推出大家熟知的FVR与 FRNG7/P7系列的设计中,不同程度融入了②3.④项技术,因此很具有代表性。三菱日立,东芝也都有类似的产品。然而,在上述四种方法中,由于未引入转矩的调节,系统性能没有得到根本性的改善
第二阶段:
矢量控制。也称磁场定向控制。它是七十年代初由西德 FBlasschke等人首先提出,以直流电动机和交流电动机比较的方法分析阐述了这一原理,由此开创了交流电动机等效直流电动机控制的先河。它使人们看到交流电动机尽管控制复杂,但同样可以实现转矩、磁场独立控制的内在本质。
矢量控制的基本点是控制转子磁链,以转子磁通定向,然后分解定子电流,使之成为转矩和磁场两个分量,经过坐标变换实现正交或解耦控制。但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足。此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配留转子位置或速度传感器,这显然给许多应用场合带来不便。仅管如此,矢量控制技术仍然在努力融入通用型变频器中,1992年开始,德国西门子开发了6SE70通用型系列,通过FC、VC、SC板可以分别实现频率控制、矢量控制、伺服控制。1994年将该系列扩展至315KW以上。目前, 6SE70系列除了200KW以下价格较高,在200KW以上有很高的性价比。
第三阶段:
1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control简称DTC)。直接转矩控制与矢量控制不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制。
转矩控制的优越性在于:转矩控制是控制定子磁链,在本质上并不需要转速信息;控制上对除定子电阻外的所有电机参数变化鲁棒性良好;所引入的定子磁键观测器能很容易估算出同步速度信息。因而能方便地实现无速度传感器化。这种控制方法被应用于通用变频器的设计之中,是很自然的事,这种控制被称为无速度传感器直接转矩控制。然而,这种控制依赖于精确的电机数学模型和对电机参数的自动识别(Identification向你ID),通过ID运行自动确立电机实际的定子阻抗互感、饱和因素、电动机惯量等重要参数,然后根据精确的电动机模型估算出电动机的实际转矩、定子碰链和转子速度,并由磁链和转矩的Band- Band控制产生PWM信号对逆变器的开关状态进行控制。这种系统可以实现很快的转矩响应速度和很高的速度、转矩控制精度。
1995 年ABB公司首先推出的ACS600直接转矩控制系列,已达到<2ms的转矩响应速度在带PG时的静态速度精度达土O01%,在不带PG的情况下即使受到输入电压的变化或负载突变的影响,向样可以达到正负01%的速度控制精度。其他公司也以直接转矩控制为努力目标,如安川VS-676H5高性能无速度传感器矢量控制系列,虽与直接转矩控制还有差别,但它也已做到了100ms的转矩响应和正负02%(无PG),正负001%(带 PG)的速度控制精度,转矩控制精度在正负3%左右。其他公司如日本富士电机推出的FRN 5000G9/P9以及最新的 FRN5000Gll/P11系列出采取了类似无速度传感器控制的设计,性能有了进一步提高,然而变频器的价格并不比以前的机型昂贵多少。
控制技术的发展完全得益于微处理机技术的发展,自从1991年INTEL公司推出8X196MC系列以来,专门用于电动机控制的芯片在品种、速度、功能、性价比等方面都有很大的发展。如日本三菱电机开发用于电动机控制的M37705、M7906单片机和美国德州仪器的TMS320C240DSP等都是颇具代表性的产品。

随着国产变频器产业的迅速发展,变频器的价格不再高高在上,它不仅解决了电机启动产生大冲击电流的问题,并且具有很好的节能效果,因此,曾经风光一时的软启动器似乎有些没落,声音越来越小。但是软启动器面临的替代压力确实越来越大, 这种情况在中国尤为明显。由于中国工业技术一直较为落后,在十多年前,中国的变频器产业刚刚起步,没有定价权,国内市场大部分为国际品牌占据,变频器的成本一直居高不下。当时,国内鼠笼型异步电动机一般采用直接启动,或用自耦、星三角启动器启动。上世纪九十年代,以单片机为核心、半导体可控硅为执行元件的智能化电机软启动器进入中国市场,并在2000年以后开始加速发展,目 前市场规模约为20亿。软启动器主要解决电动机启动时对电网的冲击和启动后旁路接触器工作的问题,对电机有较好的保护作用,在轻载情况下可以实现一定程度的节能(约5%),但是节能效果远远不如变频器。随着中国变频器产业的崛起,并因此使变频器的价格大幅下降,近几年来,变频器才又逐渐取代了软启动器的作用。
中国变频器的国产化进程正在快速崛起,质量稳定性进步很快,加上服务和成本上的优势,变频调速的性价比高,质量和价格的竞争优势越来越明显,软启动器面临的替代压力越来越大,科技进步带来的产品更新换代应该会是一个趋势。这就如同节能灯替代白炽灯一样,这是科技和生活进步的必然结果,变频器替代软启动器也是同样道理。特别是中国的变频器产业在近十多年的发展中已经实现国产化,国产变频器技术已经比较成熟,制造成本明显下降。中国软启动器行业从兴旺到衰弱也经历了一个性价比的变革,价格从以前的每千瓦150元降到每千瓦不到50元左右,国内很多企业产品质量非常稳定,但市场在逐渐萎缩。从直起、自耦和星三角启动器的发展演变,到变频调速器的出现,软启动器是这当中的过渡产品。现只有很小部分工况采用软启动器,比如电动机工作负载在90%以上的,其他工况以前是采用软启动方式起动的,现大多采用变频调速器了,因为变频调速器的节能效果有30%左右。此外,变频器价格也从早期的每千瓦1000元左右下降到每千瓦只有200多元(大功率),价格下降十分显著。如今的工矿企业对变频器的应用已经全面普及了,几乎涵盖了所有领域,不夸张地说,凡是用到电动机的地方肯定有变频调速器的身影。而且变频调速器具备了电动机所需要的起动效果和节能效果。科技进步决定市场占有,这就是为什么软起动器市场发展空间会逐步下降,而变频器市场占有率飞速提高的主要原因。
中国变频器产业的国产化水平已经有了质的突破,国产变频器的市场份额也在逐步提升,但是和国外品牌在技术上相比,还是有一定距离。
目 前谈超越还为时过早,因为我们在变频技术领域的研究、开发方面,无论在基础上还是起步时间上都落后于欧美国家。但至少目 前技术已经不是中国与国外变频器行业的壁垒,而稳定性及产品性能才是各个厂商面临的主要技术问题。许多国内软启动企业都在变频器研发上投入大量的人力与物力,力求在变频器技术方面占领制高点。一批优秀的变频器企业脱颖而出,成为了国内上市企业。尽管如此,变频器的核心器件IGBT和芯片始终依赖进口,成为制约变频器国产的瓶颈。变频器核心器件的研发制造是中国变频器产业需要突破的一个重要关口,中国威尔凯电气也正在这个领域进行不懈地坚持和努力。我想不久的将来,中国的变频技术是有可能达到甚至超越外国先进水平,至于多久能够实现,我们一起拭目以待吧。
全球性“节能减排”工业改造计划正在大规模推行,中国作为世界大国也高度重视节能减排,低能耗、低污染的低碳经济将是中国未来发展的必经之路。如今,中国正在坚定不移地推动低碳经济,相关节能减排政策已密集出台。这些举措其实都是国内变频器企业千载难逢的机遇,变频器行业将迎来新一轮高速增长期。变频器不仅要满足国内市场的需求,还要出口的世界各地,在全球的节能减排革命中发挥作用。
由于变频器具有软启动器的所有功能,但它软启动器也只是一个过渡产品。
软启动器是为了填补星-三角启动器和变频器在功能实用性和价格之间的鸿沟而研发的产品,因此说它是过渡产品。随着变频器成本的逐渐下降,软启动器的市场空间将越来越小。至于未来软启动器是否会完全消失,这还需要市场的进一步验证。就目 前情况而言,软启动器依然有自己的生存空间,在电机运行负载功率在80%以上时,选用软启动器依然是最好、最实用、最省钱的。在未来几年,软启动器的市场依然会稳定增长,但是增速远远低于变频器市场的增速,并随着市场竞争的加剧,一批规模小竞争力弱的企业被淘汰,软启动器市场集中度将进一步增加。软启动器产品的应用现只涉及到中国国民经济较多领域,电力、冶金、建材、机床、石化和化工、市政、煤炭是七个主要行业。

生意社03月10日讯 变频技术诞生背景是交流电机无级调速的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。 □ 20世纪60年代以后,电力电子器件普遍应用了晶闸管及其升级产品。但其调速性能远远无法满足需要。 □ 20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。 □ 20世纪80年代中后期,美、日、德、英等发达国家的 VVVF变频器技术实用化,商品投入市场,得到了广泛应用。 最早的变频器可能是日本人买了英国专利研制的。不过美国和德国凭借电子元件生产和电子技术的优势,高端产品迅速抢占市场。 □步入21世纪后,国产变频器逐步崛起,现已逐渐抢占高端市场 单元串联型变频器 这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。 整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。 变频器的输入部分是一台移相变压器,原边Y形连接,副边采用沿边三角形连接,共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度。 该变频器的特点如下: ① 采用多重化PWM方式控制,输出电压波形接近正弦波。 ② 整流电路的多重化,脉冲数多达36,功率因数高,输入谐波小。 ③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。 ④ 直接高压输出,无需输出变压器。 ⑤ 极低的dv/dt输出,无需任何形式的滤波器。 ⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。 ⑦ 功率单元自动旁通电路,能够实现故障不停机功能。 随 着现代电力电子技术及计算机控制技术的迅速发展,促进了电气传动的技术革命。交流调速取代直流调速,计算机数字控制取代模拟控制已成为发展趋势。交流电机 变频调速是当今节约电能,改善生产工艺流程,提高产品质量,以及改善运行环境的一种主要手段。变频调速以其高效率,高功率因数,以及优异的调速和启制动性 能等诸多优点而被国内外公认为最有发展前途的调速方式。 以前的高压变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大, 对电网和电机都有影响。近年来,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的高压变频器,性能优异,可以实 现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高。

变频器RST端和UVW端不能调换。

变频器RST端是变频器的输入端,也就是交流电源的输入端,接工频电源。变频器的UVW端,也就是变频器的输出端,接三相鼠笼异步电动机。

电源是一定不能接到变频器的UVW端,也就是输出端上的,否则将会损坏变频器。

变频器是应用变频技术制造的一种静止的频率变换器,其功能是利用半导体器件的通断作用将频率固定的交流电变换成频率连续可调的交流电源。整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等是变频器的主要组成部分。

扩展资料

变频器发展方向:

1、网络智能化:

智能化的变频器使用时不必进行很多参数设定,本身具备故障自诊断功能,具有高稳定性、高可靠性及实用性。利用互联网可以实现多台变频器联动,甚至是以工厂为单位的变频器综合管理控制系统。

2、专门化和一体化:

变频器的制造专门化,可以使变频器在某一领域的性能更强,如风机、水泵用变频器、电梯专用变频器、起重机械专用变频器、张力控制专用变频器等。

除此以外,变频器有与电动机一体化的趋势,使变频器成为电动机的一部分,可以使体积更小,控制更方便。

3、节能环保无公害

保护环境,制造“绿色”产品是人类的新理念。电力拖动装置应着重考虑节能、变频器能量转换过程的低公害,使变频器在使用过程中的噪声、电源谐波对电网的污染等问题减少到最低程度。

4、适应新能源

现在以太阳能和风力为能源的燃料电池以其低廉的价格崭露头角,有后来居上之势。这些发电设备的最大特点是容量小而分散,将来的变频器就要适应这样的新能源,既要高效,又要低耗。

现在电力电子技术、微电子技术和现代控制技术以惊人的速度向前发展,变频调速传动技术也随之取得了日新月异的进步,这种进步集中体现在交流调速装置的大容量化、变频器的高性能化和多功能化、结构的小型化等方面。

参考资料来源:《变频调速技术与应用(第2版)》 李良仁  主编  电子工业出版社

第4章 变频器的参数设置和功能选择  41 三菱 FR-A700系列变频器的功能及参数

参考资料来源:百度百科--变频器

变领技术是将一种频率电源转换成另一种频率电源的技术。在电源的转换过程中.电能并不发生变化,只是频率发生变化,目的是为了满足人们生产、生活各种领域中对电源的不同需要,其中一项典型应用就是将工频(50Hz或60Hz)的交流电源,转换成频率可变的交流电源提供给电动机,通过改变输出电源的频率来对电动机进行调速控制,从而实现节能效果。

1 变频技术发展

随着微电子技术、电力电子技术和自动控制技术的不断发展,变频技术也得到了迅速的发展和广泛的应用。变频技术最初主要用于整流和交直流可调电源,现在已广泛用在高压直流输电、不同频率电源连接、静止无功功率补偿和吸收等,应用领域涵盖交通运输业、石油行业、家用电器、国防军事等社会生产、生活的各个方面。在运输业应用如高速铁路、超导磁悬浮列车、电动汽车、机器人等,在石油行业应用如采油调速、超声波驱油等,在家用电器方面应用如变频空调、变频洗衣机、变频微被炉、变频电冰箱等,在军事方面应用如军事通信、导航、雷达等。

变频技术的发展主要以电力电子器件的发展为基础,主要经历了以下几代:

第1代电力电子器件以晶闸管为代表(20世纪50年代)。1956年贝尔实验室发明了晶闸管,1958年通用电气公司推出了商品化的产品。晶闸管是一种电流控制型开关器件,可以实现小电流控制大功率变换,但开关频率低,且导通后不能自关断。

第2代电力电子器件以电力晶体管(GTR)和门极关断晶闸管(GTO)为代表(20世纪60年代)。门极关断晶闸管是一种电流型自关断型开关器件,较容易实现整流、斩波、逆变等变频功能,其开关频率在1~5kHz之间。

第3代电力电子器件以绝缘栅双极型晶体管(GBT)为代表(20世纪70年代)。绝缘栅双极型晶体管是一种电压控制型自关断电力电子器件,其开关频率很高,达到20~200kHz,它的应用使电气设备的高频化、高效化和小型化得以实现。

第4代电力电子器件以智能化功率集成电路(PIC)和智能功率模块(IPM)等为代表(20世纪80年代、90年代)。它们实现了开关频率的高速化、低导通电压的高效化和功率器件的集成化,另外还可集成逻辑控制、保护、传感及测量等功能。

变频技术的发展方向是高电压大容量化、高频化、组件模块化、小型化、智能化和低成本化。

2 变频技术类型

变频技术可分为以下几种类型:

(1)交—直变频技术:又称整流技术,它是利用整流电路将交流电源转换成直流电源。

(2)直—直变频技术:又称斩波技术,它是利用斩波电路将直流电源转换成直流脉冲电源,通过调节脉冲的频率或宽度来改变直流脉冲电源有效值的大小。

(3)直—交变频技术:又称逆变技术,它是利用逆变电路将直流电源转换成交流电源。

(4)交—交变频技术:又称移相技术.它是利用交—交变频电路将一种频率的交流电源转换成另一种频率的交流电源。

3 变频器简介

我国变频器应用始于20世纪80年代末,由于变频器具有良好节能效果等优越性能,使用量不断增加,而且每年以20%的递增量快速发展。变频器至今并无确切的定义,但按其功能作用可理解为改变电动机电源频率值及电压值的自动化电气装置。变频器由电力电子器件、电子元器件,微处理器(CPU)等组成。变频器就是一种典型的采用了变频技术的电气设备。变频器的主要功能是将工频(50Hz或60Hz)的交流电源转换成频率可变的交流电源提供给电动机,通过改变输出电源的频率来对电动机进行调速控制。因为电子电工学告诉我们,电动机的转速与其消耗的能量有一定对应关系。通俗地讲,就是电动机的转速越快,其消耗的能量大幅度增加;反之,电动机的转速越慢,其消耗的能量将大幅度减少。变频器正是基于这个原理,通过变频器中的微处理器实时调整控制电动机的转速,达到节约能量的目的。

1)变频器外形

如图4-51所示,列出了几种常见变频器的实物外形。

图4-51 几种常见变频器的实物外形

2)异步电动机的调速方式

当三相异步电动机定子绕组通入三相交流电后,定子绕组会产生旋转磁场,旋转磁场的转速n0与交流电源的频率f及电动机的磁极对数p有如下关系:

电动机转子的旋转速度n(即电动机的转速)略低于旋转磁场的旋转速度n0(又称同步转速),两者的转速差称为转差s,电动机的转速为:

由于转差s很小,一般为001~005,为了计算方便,可近似认为电动机的转速与定子的旋转磁场转速相同,即电动机转速近似为:

从公式(4-3)可以看出,三相异步电动机的转速n与交流电源的频率f和电动机的磁极对数p有关,当交流电源的频率f发生改变时,电动机的转速就会发生变化。通过改变电动机的磁极对数p来调节电动机转速的方法称为变极调速。通过改变交流电源的频率来调节电动机转速的方法称为变频调速,变频器是通过改变交流电源频率来调节电动机转速。

4 变频器的组成方框图

变频器的功能是将工频(50Hz或60Hz)交流电源转换成频率可变的交流电源提供给电动机,通过改变交流电源的频率来对电动机进行调速控制。变频器的种类很多,主要可分为两类:交—直—交型变频器和交—交型变频器。

1)交—直—交型变频器

交—直—交型变频器是先将工频电源转换成直流电源,再将直流电源转换成频率可变的交流电源,然后提供给电动机,通过调节输出电源的频率来对电动机转速进行控制。交—直—交型变频器组成方框图如图4-52所示。

下面对照图4-52说明交—直—交型变频器的工作原理。

图4-52 交—直—交型变频器组成方框图

工频交流电源经整流电路转换成脉动的直流电,直流电再经中间电路进行滤波平滑,然后送到逆变电路,在控制电路的控制下,逆变电路将直流电转换成频率可变的交流电并送给电动机,驱动电动机运转,改变逆变电路输出的交流电频率,电动机转速就会发生相应的变化。

变频器中的整流电路、中间电路和逆变电路是主体电路,用来完成交—直—交的转换,它们工作在高电压大电流状态。控制电路是变频器的控制中心,当它接收到输入调节装置或通信接口送来的指令信号后,会发出相应的控制信号去控制主体电路,使主体电路按设定的要求工作,同时控制电路还会将有关的设置和机器状态信号送到显示装置,以显示有关信息,便于用户 *** 作或了解变频器的工作情况。

变频器的显示装置一般采用显示屏和指示灯;输入调节装置主要包括按钮、开关和旋钮等;通信接口用来与其他的设备(如可编程序控制器PLC)进行通信,接收它们发送过来的信息,同时还将变频器有关信息反馈给这些设备。除此之外,变频器还有一些其他接口,可以通过这些接口扩展变频器的一些功能,如外接制动电阻、外接频率表等。

2)交—交型变频器

交—交型变频器是直接将工频电源转换成频率可变的交流电源并提供给电动机,通过调节输出电源的频率来对电动机转速进行控制。交—交型变频器组成方框图如图4-53所示,从图中可以看出,交—交型变频器与交—直—交型变频器的主体电路不同,它采用交—交变频电路直接将工频电源转换成频率可调的交流电源的方式进行变频调速。

图4-53 交—交型变频器组成方框图

交—交变频电路一般只能将输入交流电频率调低输出,而工频电源频率本来就低,所以交—交型变频器的调速范围很窄,另外这种变频器要采用大量的晶闸管等电力电子器件,导致装置体积大、成本高,故交—交型变频器的应用远没有交—直—交型变频器广泛,因此大家要重点学习了解交—直—交型变频器。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12868484.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存