网络爬虫主要能干啥?

网络爬虫主要能干啥?,第1张

网络爬虫,是一种自动获取网页内容的程序,是搜索引擎的重要组成部分。一般人能访问到的网页,爬虫也都能抓取。所谓的爬虫抓取,也是类似于我们浏览网页。但与普通人上网方式不同,爬虫是可以按照一定的规则,自动的采集信息。
举个例子,比如说你从事的是文字编辑工作,需求稿件量大,可是效率很低,最大的一个原因便是很多的时间花费在了采集资料上,假如继续按照之前手动浏览的方式,要么就是你通宵达旦熬夜加班,要么便是让其他人帮你,但显然两者都不方便。这种情况下,网络爬虫就显得很重要。
随着大数据时代的来临,网络爬虫在互联网中的地位将越来越重要。互联网中的数据是海量的,如何自动高效地获取互联网中我们感兴趣的信息并为我们所用是一个重要的问题,而爬虫技术就是为了解决这些问题而生的。
我们感兴趣的信息分为不同的类型:如果只是做搜索引擎,那么感兴趣的信息就是互联网中尽可能多的高质量网页;如果要获取某一垂直领域的数据或者有明确的检索需求,那么感兴趣的信息就是根据我们的检索和需求所定位的这些信息,此时,需要过滤掉一些无用信息。前者我们称为通用网络爬虫,后者我们称为聚焦网络爬虫。

高通平台modem部分mbn文件的OTA和PDC升级方法

最近需要采用一种移动物联网卡,发现在apns-confxml增加了对应apn信息后,部分设备采用新的xml就可以支持新卡,但部分设备还不行,同一个系统,不行的设备,我先插入张移动

1 OTA方式
比如China_CMCC_Commercial_Volte_OpenMkt_mcfg_swmbn文件位于/system/etc/xxxmbn/目录下,就只需要把mbn文件放在升级包的/system/etc/xxxmbn/目录下即可。
升级的方式,不能降级(比如Version版本0x05012016不能降级为0x05012014),这是高通的策略,感觉这个限制不是很合理,不知道为什么?知道的朋友麻烦告知一声缘由。
2 使用PDC工具加载和激活
PDC工具之前为QPSTsoftware download的子功能,现在作为一个单独的app包含在QPST中。
Device下拉目录中的网卡,出现各运营商的mbn
下面已电信卡为例 *** 作
21 去激活和移除mbn
(1) 去激活mbn
去激活后Sub0的状态由Active变为Inactive。
(2) 移除mbn
22 加载、选择和激活mbn
(1) 加载mbn
(2) 选择mbn配置
选择后Sub0的状态有Inactive变为Pending
(3) 激活mbn
激活后,Sub0的状态有Pending变为Active,然后需要重启。
加载和激活是否成功,看Subx和Version的信息
3 modemst1、modemst2、fsg和mbn的关系
modemst1/modemst2/fsg这三个分区主要用于存放高通QCN,QCN简单的理解为和modem关系很大的一些参数。
adb reboot bootloader
fastboot erase modemst1
fastboot erase modemst2
我删除OpenMkt-Commerical-CT后,重启系统会重新生成,我重新删除后,擦除这两个分区后重启,我观察了OpenMkt-Commerical-CT的Version由之前的0x0501131D变为0x0501131F,说明系统modem部分默认带有这个版本的mbn。另外我烧录fsg
fastboot flash fsg fs_imagetargzmbnimg
fastboot reboot
发现版本重新变回0x0501131D,说明fsg分区对应的EFS文件fs_imagetargzmbnimg包含有mbn文件。

1什么是物联网

物联网就是利用局部网络或互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络。物联网其实就是互联网的延伸,它包括互联网及互联网上所有的资源,兼容互联网所有的应用,但物联网中所有的元素都是个性化和私有化。

物联网的影响

物联网成熟之后,真正实现了万物互联,即“人与人、人与物、物与物”互联,世间一切都连接起来。物联网使得连接起来的终端呈指数级增长,产生的数据也会呈指数级增长。物联网必将是下一个推动世界高速发展的“重要生产力”,一方面可以提高经济效益,很大基础上节约成本;另一方面可以为全球经济的复苏提供技术动力,将是继通信网之后的另一个万亿级市场。

把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。

2什么是区块链

区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。

区块链的特点

广义上来讲,区块链技术是利用块链式数据结构来验证与存储数据、利用分布式节点共识算法来生成和更新数据、利用密码学的方式保证数据传输和访问的安全、利用由自动化脚本代码组成的智能合约来编程和 *** 作数据的一种全新的分布式基础架构与计算范式。

区块链采取分布式数据存储、点对点传输、共识机制、加密算法等技术,具有去中心化、开放性、自治性、不可篡改性、匿名性等特点,能够有效地在不同节点之间建立信任、获取权益。

区块链的应用

区块链最早的应用是数字货币,比特币是最具有典型代表,目前1比特币的价格已经超过40000人民币,其他的还有litecoin、dogecoin、dashcoin等等。

目前,区块链应用最广的是金融领域,此外还在智能合约、证券交易、电子商务、物联网、社交通讯、文件存储、存在性证明、身份验证、股权众筹、版权保护等领域有广泛应用。

3什么是大数据

其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策。

大数据的特征

大数据是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。

大数据具有如下本质特征:

1根本目的是服务于决策,大数据能够帮助各类组织和个人大幅度提升决策能力,做出更好的决策和判断;

2量度大,大数据通常是指100T以上的数据量,这难以依靠传统的计算手段有效计算,而必须依靠新的计算手段和数据挖掘工具;

3频率高,大数据是用户参与与互动而产生的数据,根据用户的网络痕迹来及时地了解用户的相关数据,这种数据是按照天甚至小时来计的高频数据。而传统的数据频率都很低,很多数据是按照月甚至按照年份来计算的;

4速度快,大数据是实时性的数据,能够实时反应。例如,在百度搜索框输入一个关键词,能够瞬间呈现,而传统的数据收集方式则是严重滞后的;

5永远在线。在线是大数据的前提条件,从这个角度来说,大数据是永远在线的,能够随时被调用的。大数据通过分析各种网络终端上的用户痕迹,能够更好地分析用户的行为、情感、思想、爱好与需求,来更好地进行决策和分析。

大数据的三大关键点

首先,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析,这就要求政府及时开放更多的数据,以提高数据的可获得度。

其次,进行科学的模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平,当然数据量越多也有助于模型的合理构建。

第三,利用专家对观点进行提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。

物联传媒提供

通俗讲解边缘计算
随着物联网越来越火,同时伴随着物联网而来的,就是各种概念和各种技术,其中一个就是边缘计算,当然还有雾计算。其实边缘计算和雾计算都差不多,雾计算只是和云计算是相对的。只是叫边缘计算呢,比较高大上吧。
下面我们要通俗地讲一讲边缘计算。

为什么要通俗的讲呢,怕如果不通俗,你听不明白。新的东西在出来的时候,往往是需要一个接纳和理解的过程。就像以前互联网刚出来的时候,很多人都不知道互联网,于是就得慢慢科普,让大家慢慢接受和理解呀。谁现在还解释什么是互联网呀。

而边缘计算也有一段时间了,只是随着物联网的发展,边缘计算的概念也开始流行起来。我们先看一段非通俗的介绍边缘计算的概念:
边缘计算,是一种分散式运算的架构。在这种架构下,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。

或者说,边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。

边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。
以上是我从网络文章摘抄的一段对于边缘计算的解释。整个解释基本都是专业术语,搞工控的你,看完这段话,你来告诉我什么是边缘计算。

作为一名参与研发产品边缘计算的程序员,我决定写一篇文章来通俗讲解一下这个边缘计算。
首先,我要举一个不太恰当的例子。

比如有一款APP,用户在使用这款APP的时候,就会收集用户的信息,比如收集这个用户的年龄,性别,手机号,地址位置,搜索记录等等信息,而收集这些信息主要是更好地分析这个用户的行为和感兴趣的东西,比如车,房子,书,美食等什么感兴趣。然后更为准确地为其投放内容及广告。

    这个是很常见的一个功能,但是就是这样一个功能,怎么和边缘计算挂钩呢。

在边缘计算之前,就是云计算了。

如果是使用云计算,这款APP的行为是这样的:

    APP收集到信息后,把所有的基本信息,上传到服务器中,然后由服务器来执行算法,计算和识别出用户的兴趣爱好,甚至可能推算出这个用户的消费能力。然后服务器就可以根据这个推算出来的结果,为用户投放其感兴趣的内容和广告。

如果是使用边缘计算,这款APP的行为就是这样:

    APP收集了信息后,不上传到服务器中。然后由APP自己计算和识别出这个用户的兴趣和爱好,也可以推算出这个用户的消费能力,也就是服务器的计算功能,直接由APP来完成。然后服务器只需要问一下APP,哪个用户是有可能是年薪百万的,哪个用户是单身的。APP只需要告诉服务器说,这个一路向东用户很帅,而且还单身,喜欢旅游,写诗,可以为其投放相亲美女内容。

就这样,整个过程并没有服务器参与计算,服务器也没有参与收集信息。因为这个信息在APP本身收集和计算,并没有进行上传,所以也没有涉及信息收集。

而,这就是边缘计算。

也就是以前由服务器作计算的部分,现在改由信息采集的设备直接计算了,再把计算的结果,直接输出到服务器中。服务器只要结果,并不需要过程的数据。
下面我们就以回答问题的形式来通俗的聊一聊这个边缘计算吧。

所以,什么是边缘计算呢。

边缘计算,说白了,就是(服务器)云计算懒得算了,就这点数据,你在数据采集的时候,顺便自己算得了,什么都丢到服务器来算,很累的。于是,边缘计算就这么来了。
那么,工控领域行业中使用到边缘计算的都有哪呢

这个就太多了。随着很多PLC,控制器和触摸屏等都开始接入到物联网中,每个设备需要采集的信息不一样,有温度,湿度,产量,生产数据,运行状态等。而不同行业的参数指标,性能数据都不一样,这很难在服务器通过云计算来形成一套标准,这使得PLC,控制器等,都会用到边缘计算。
为什么以前的DTU,或者物联模块等不流行边缘计算,现在开始流行了呢。

因为现在的IoT使用的模块或者芯片的处理能力也越来越高,资源也比较丰富,随着一些芯片成本的下降,以及开发模式的简化,使得一些芯片或模块在处理基本的数据采集功能后,仍存在资源过剩及功能利用率低的情况,也就是一个100%的芯片或模块,你只使用了10%的来采集数据,那还有90%你可以用来作计算
那么,使用边缘计算的优势在哪里呢。

1 可以使得设备的支持数量提升几个数量级。

   比如一个服务器有10000点血。而接入一个设备,就要消耗1点血,如果再对这个设备进行数据分析,需要消耗9点血。也就是接入并计算一个设备就需要10点血。那么这个服务器最多只能接入1000个设备就挂了。

   如果服务器只负责接入设备,不进行计算和分析,那么接入一个设备,消耗1点血,由设备自己进行数据计算和分析,再输出结果。这时候服务器就可以接入10000个设备了。

  没有使用边缘计算,服务器可以接1000个设备。

  如果使用了边缘计算,服务器可以接10000个设备。提升了一个数量级。而对于一些复杂的设备,特别是一些工厂,现场作业等需要数据量多的,如果使用了边缘计算来给服务器节省空间和资源,这个优势更能体现出来了。

2 让计算变得更为灵活和可控

   前面说到,接入设备的服务器很难做到统一的计算分析标准,因为物联网可是一个万物接入的网络,每一个设备采集的数据不一样。如果使用了边缘计算,就可以单独针对每一个设备进行相应的计算和分析。当然,如果相同的设备或者相同参数的,可以进行复制使用同一套计算标准或算法。如果将计算脚本开放出来给用户,用户就可以自定义去添加自己的计算公式和行为。
边缘计算的模式和拓扑结构是什么样的呢。
比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。

    数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。

    在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。

    比如数据采集模块需要采集一个电表,电表能采集的数据有电流,电压,偏偏没有功率。当然现在的电表采集不到功率很少了,只是举例。

    那怎么办呢,偏偏客户很想看到功率。那在没有边缘计算的时候,为了要看到功率,只好在云服务里,增加一定的计算规则,将采集到的电流和电压通过计算得到功率。如果有1000个电表,云服务器就要对这1000个电表进行计算。这就增加了云服务器的工作量和负担了。

    如果有了边缘计算,那么在数据采集模块,就可以添加计算功能,直接将采集的电流和电压通过计算得到功率,只需要把功率上传给服务器就可以了。这样,即便有50000个电表,云服务也毫无计算压力,因为它并不需要计算。
    这就是通俗的讲一讲边缘计算。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12868830.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存