对我们人类而言,是使用五官和皮肤,通过视觉、味觉、嗅觉、听觉和触觉感知外部世界。而感知层就是物联网的五官和皮肤,用于识别外界物体和采集信息。感知层解决的是人类世界和物理世界的数据获取问题。它首先通过传感器、数码相机等设备,采集外部物理世界的数据,然后通过RFID、条码、工业现场总线、蓝牙、红外等短距离传输技术传递数据。感知层所需要的关键技术包括检测技术、短距离无线通信技术等。
感知层由基本的感应器件(例如RFID标签和读写器、各类传感器、摄像头、GPS、二维码标签和识读器等基本标识和传感器件组成)以及感应器组成的网络(例如RFID网络、传感器网络等)两大部分组成。该层的核心技术包括射频技术、新兴传感技术、无线网络组网技术、现场总线控制技术(FCS)等,涉及的核心产品包括传感器、电子标签、传感器节点、无线路由器、无线网关等。
一些感知层常见的关键技术如下:
l 传感器:传感器是物联网中获得信息的主要设备,它利用各种机制把被测量转换为电信号,然后由相应信号处理装置进行处理,并产生响应动作。常见的传感器包括温度、湿度、压力、光电传感器等。
2 RFID:RFID的全称为Radio Frequency Identification,即射频识别,又称为电子标签。RFID是一种非接触式的自动识别技术,可以通过无线电讯号识别特定目标并读写相关数据。它主要用来为物联网中的各物品建立唯一的身份标示。
3 传感器网络:传感器网络是一种由传感器节点组成网络,其中每个传感器节点都具有传感器、微处理器、以及通信单元。节点间通过通信网络组成传感器网络,共同协作来感知和采集环境或物体的准确信息。而无线传感器网络(Wireless Sensor Network,简称WSN),则是目前发展迅速,应用最广的传感器网络。
对于目前关注和应用较多的RFID网络来说,附着在设备上的RFID标签和用来识别RFID信息的扫描仪、感应器都属于物联网的感知层。在这一类物联网中被检测的信息就是RFID标签的内容,现在的电子(不停车),收费系统(Electronic Toll Collection,ETC)、超市仓储管理系统、飞机场的行李自动分类系统等都属于这一类结构的物联网应用。HS-6451/G物联网网关集云计算、大数据、边缘计算、5G、物联网通讯等现代技术与绿色环保技术相融合,打造出高效统一、精准管理的物联网网关
物联网网关作为连接传感设备与监控平台的中间载体,实时采集园区内电、水、气、环境等数据信息,并通过4G、5G等通信技术将数据传至监控平台
监控平台接收到数据后,可对园区的能耗数据进行能耗动态的计算、分析与处理,下达命令,并以图表、图形、声音等形式通知监管人员,不仅达到能耗监测、自动预警的目的,而且可提升园区的资源整合能力,进而提升整个产业的经济效益
智慧路灯杆系统:以园区能耗指标、环保节能服务、园区智慧化管理等多维度为设计思路,将网关与灯杆上所搭载的太阳能供电、充电桩、智慧照明等传感设备构建连接
依托5G、大数据、云计算等技术实现数据采集、远程监管与多协议转换,以此增加智慧园区在照明、充电、供电等能耗方面的灵活性与自主性,降低园区运营成本,提高园区用能效率,促进绿色低碳发展、推动 社会 整体能效提升
用电监控:园区作为产业集群的重要载体,对用电的需求很大,例如照明、空调等就是能源浪费的“重灾区”
监控系统可实时监测线路电流、电压、温度等数据。当用电数据超出园区用电的最高值,亦或是发生用电的异常情况,网关可进行联动分析,智能报警,综合管控园区提供电力能源,助力园区节能降耗,提升电力能源的可持续发展
若是发生用电不当,导致发生火灾等紧急事件,网关可迅速上传报警信号至监控平台,平台立即开启应急预案,迅速开展应急调度指挥与救援处理工作,实现多部门联动与协同高效处理。此方案可全面覆盖园区楼宇、地下停车场、园区道路等细分场景。
IOT网关,接收sensor数据的总入口,主要是日志,安全防护,流控,协议转换等功能,
图1 IOT网关
之前有提到IOT网关是基于python的twisted框架实现的,初期的时候该IOT网关主要实现的功能是 数据接收和转换功能 和 安全防护 。
数据接收和转换功能 ,这里很简单,拟定好数据交互格式后,IOT网关按照约定好的格式进行解析,然后转发给后端服务进行进一步的处理
安全防护 ,设备的区分主要是依靠烧录到硬件的SN号来实现,SN号包含的信息比较多,如生产批次,设备型号等,受制于厂商我安全防护不能做的非常完善,同时sensor与IOT网关的交互不能非常复杂。安全防护这一块理论上是设备接入要一型一密或者一机一密,协议上还应该启用tls/ssl安全通信协议。
图2 鉴权
安全防护要做ssl这类的安全通信协议的话,要考虑设备厂商实现通信模块能力,设备功耗,设备性能(低端设备cpu性能可能比较差,可考虑对称加密形式),IOT网关也需要引入相应模块。
另外认证从性能方面考虑,后期在设备比较多的情况下,可以加入redis等内存型key-value数据库,缓存设备信息,提高鉴权模块性能。
实践中,我们的sensor基本都是依靠电池供电,因此我们的IOT网关基本是面向短链接(后期我们有监测设备,依靠外部电源直接供电,为长连接),因此在每次发起连接我们都要进行一次鉴权,鉴权通过后,设备方可上传传感器监测数据和设备自身状态。
图3 数据交互流程
这一块的调试工作长达半年左右,才基本稳定下来,主要集中在设备商处除了硬件稳定性,还有在调试中发现传输的字符串乱码(c语言处理问题),沾包(厂商开发人员tcp协议不熟),优化传输效率,关闭cork或者 Nagle 算法(传输包很小)。
因为IOT网关不能主动断连接,理论 *** 作中,IOT网关应该和sensor有心跳协议,保证连接的有效性。设备商在数据流程交互完成后,竟然没有close 连接,直接休眠,导致网关所在服务器的连接的文件描述符一直没有正常释放,后面为了预防这种现象,我开启了 *** 作系统层面的keepalve定时器,回收失效连接(系统默认时间是2小时左右,我缩短了失效时间),理论上来说应该是应用层面去实现心跳协议。
整个IOT网关的设计,是无状态,可伸缩的,单网关在普通型ecs上可轻松达到数百tps。
网关是将两个使用不同传输协议的网络段连接在一起的设备,网关一般用作网络的入口和出口点,因为所有数据必须在路由之前通过或与网关通信。在大多数基于IP的网络中,唯一不通过至少一个网关的流量是在同一局域网(LAN)段上的节点之间流动的流量。
在个人或企业场景中使用网关的主要优点是将互联网连接简化为一个设备。在企业中,网关节点还可以充当代理服务器和防火墙。
网关如何工作
所有网络都有一个边界,限制与直接连接到它的设备的通信。因此,如果网络想要与该边界之外的设备,节点或网络通信,则它们需要网关的功能。网关通常被表征为路由器和调制解调器的组合。
网关在网络边缘实现,并管理从该网络内部或外部定向的所有数据。当一个网络想要与另一个网络通信时,数据包将传递到网关,然后通过最有效的路径路由到目的地。除路由数据外,网关还将存储有关主机网络内部路径的信息以及遇到的任何其他网络的路径。
网关基本上是协议转换器,促进两个协议之间的兼容性,并在开放系统互连(OSI)模型的任何层上 *** 作。
网关的一个用途是在物联网环境和云之间创建通信链路。
网关类型
网关可以采用多种形式并执行各种任务。这方面的例子包括:
Web应用程序防火墙: 此类型过滤来自Web服务器的流量并查看应用程序层数据。
云存储网关:此类型使用各种云存储服务API调用转换存储请求。它允许组织将存储从私有云集成到应用程序中,而无需迁移到公共云。
API、OA或 XML 网关: 此类型管理流入和流出服务,面向微服务的体系结构或基于XML的Web服务的流量。
物联网网关: 此类型聚合来自物联网环境中设备的传感器数据,在传感器协议之间进行转换,并在向前发送之前处理传感器数据。
媒体网关 : 此类型将数据从一种网络所需的格式转换为另一种网络所需的格式。
电子邮件安全网关:此类型可防止传输违反公司政策或将以恶意目的传输信息的电子邮件。
VoIP中继网关 :这种类型便于使用普通老式电话服务设备,如固定电话和传真机,以及IP语音(VoIP)网络。
此外,服务提供商可以开发网关,供客户使用。
网关和路由器的相似之处在于它们都可用于调节两个或多个独立网络之间的流量。但是,路由器用于连接两个相似类型的网络,网关用于连接两个不同的网络。由于这种逻辑,路由器可能被视为网关,但网关并不总是被视为路由器。路由器是最常用的网关,用于将家庭或企业网络连接到互联网。
物联网网关的主要功能是在传感器协议之间进行转换,并在向前发送之前处理传感器数据,把不同的物收集到的信息整合起来,并且把它传输到下一层次,因而信息才能在各部分之间相互传输。物联网网关可以实现感知网络与通信网络,以及不同类型感知网络之间的协议转换;既可以实现广域互联,也可以实现局域互联。
1、广泛的接入能力,常见的 WSNs 技术就包括 Lonworks、ZigBee、6LowPAN、RUBEE 等。各类技术主要针对某一应用展开,之间缺乏兼容性和体系规划。
2、可管理能力,首先要对网关进行管理,如注册管理、权限管理、状态监管等。网关实现子网内的节点的管理,如获取节点的标识、状态、属性、能量等,以及远程实现唤醒、控制、诊断、升级和维护等。由于子网的技术标准不同,协议的复杂性不同,所以网关具有的管理性能力不同。提出基于模块化物联网网关方式来管理不同的感知网络、不同的应用,保证能够使用统一的管理接口技术对末梢网络节点进行统一管理。
3、协议转换能力,从不同的感知网络到接入网络的协议转换、将下层的标准格式的数据统一封装、保证不同的感知网络的协议能够变成统一的数据和信令;将上层下发的数据包解析成感知层协议可以识别的信令和控制指令。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)