系统:Windows11
云计算是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
云计算具有高效的运算能力,在原有服务器基础上增加云计算功能能够使计算速度迅速提高,最终实现动态扩展虚拟化的层次达到对应用进行扩展的目的。计算机包含了许多应用、程序软件等,不同的应用对应的数据资源库不同,所以用户运行不同的应用需要较强的计算能力对资源进行部署,而云计算平台能够根据用户的需求快速配备计算能力及资源。
必须强调的是,虚拟化突破了时间、空间的界限,是云计算最为显著的特点,虚拟化技术包括应用虚拟和资源虚拟两种。众所周知,物理平台与应用部署的环境在空间上是没有任何联系的,正是通过虚拟平台对相应终端 *** 作完成数据备份、迁移和扩展等。
物联网是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
机器的世界里没有信任机制,这恰恰是区块链能够真正发挥作用的地方。
当今网络中的物联网设备不是以独立实体身份存在的,而是受控于中央管理的网络。对于外部世界而言,物联网设备处理的是大型云服务器,服务器中有些数据的来源是未知的,也没有任何与收集数据的设备直接交互的方式。
而在区块链的网络中,每个节点,即连接在网络中的任何参与者,都具有唯一的身份标识,即私钥和公钥对。这种身份标识可以帮助它成为网络中的独立参与者。设备被强制要求使用加密签名或数字信息来准确无误(几乎不可能伪造)的识别自己的唯一身份。也就是说,通过区块链技术的赋能,物联网中的每台设备都可以成为网络中的独立个体。
此外,区块链可以通过相同的加密技术,赋予设备所有权的概念,以确保每台设备都是独一无二的实体。此外,任何设备都可以通过签名及加密的方式来记录它访问过的任何形式的数字资产。具体而言,设备现在可以拥有加密货币(例如比特币)以及它可以控制的其他形式的资产(例如:数据,带宽,存储等)。
通过拥有这种所有权的概念,物联网设备将成为一个独立的经济实体,不仅能够进行交互,还能使自己的经济效益最大化。
例如,设备在处于空闲状态时,可以自行决定将自己有价值的功能开放拍卖,或者按需收集定制数据;为了避免过时,设备可以与其他类似的设备联网以订购固件升级服务等等。虽然这目前听起来特别像科幻小说,但我们相信这些例子会很快出现在我们的生活中。
保证数字化资产的所有权等同于保证了资产生成者的隐私。没有发起者的明确许可,例如没有解密的密钥,就没有人可以访问这些数据。通过这种方式,眼下那些猖狂的、暗中进行的数据采集与整合将被大白于天下,只有明确得到数据生产者和所有者的许可才可以进行 *** 作处理。
以上观点来自Taraxa(快速、可扩展的分布式公共账本)创始人Steven Pu
物联网系统构成:
1、东西(设备):这些被定义为唯一可识别的节点,主要是传感器,它们通过网络进行通信,无需人工干预。
2、网关:它们充当东西和云之间的中介,以提供所需的网络连接、安全性和可管理性。
3、网络基础设施:它由路由器、聚合器、网关、中继器和其他控制数据流的设备组成。
4、云基础架构:云基础架构包含联网的大型虚拟化服务器和存储池。
简介。
物联网系统的出现被称为第三次信息革命。该系统通过射频自动识别、红外感应器、全球定位系统、激光扫描仪、图像感知器等信息设备,按约定的协议,把各种物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理。实际上它也是一种微型计算机控制系统,只不过更庞大而已。
现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。
先定义一下边缘计算(wikepedia,2019):
这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。
在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。
而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。
增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:
- 低延迟:数据由近场产生,能快速回应
- 独立性:在没有网络连接下,系统亦能运作
- 合规性:无需传送用户资料,保护个人数据
- 简化数据:终端先处理部份数据,数据简化后才向云服务器传输
- 安全性:数据传输减少,减少网络安全风险
无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。
下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。
假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。
很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。
在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。
汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)
由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。
随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。
物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。
因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。
在任何领域,底层基础设施都是至关重要的。对于数字化 社会 ,半导体、 *** 作系统则是整个数字化生态的底层基础设施。中国在芯片和 *** 作系统上实现突破,不仅关乎国家安全,也与中国的数字化产业发展潜力息息相关。
就像一颗大树一样,根扎的越深,树才能长得越高,枝叶才能更加茂盛。从这个角度来看,华为鸿蒙的确是国之重器。上至国家部门,下至黎明百姓,都对鸿蒙寄予厚望。
需要指出的是,鸿蒙一直宣称自己是面向物联网的 *** 作系统,与安卓系统有本质的区别。事实也的确如此,鸿蒙并不是在重复造轮子,而是下一代 *** 作系统。 鸿蒙对标的不是谷歌安卓,而是谷歌的物联网 *** 作系统Fuchsia OS 。那么,鸿蒙与目前的 *** 作系统相比,先进在哪里,鸿蒙是否就是未来 *** 作系统的终点呢?
这篇文章,我们将讨论鸿蒙与目前 *** 作系统的主要差别,描绘鸿蒙想要实现的“理想国”。此外,鸿蒙目前还只是一个半成品,更先进的 *** 作系统,是云 *** 作系统。接下来,我们将展开讨论。
说明:目前很多云厂商都宣称自研了云 *** 作系统,他们所谓的云 *** 作系统,实际上是云资源管理平台,不是真正的 *** 作系统。什么才是云 *** 作系统,目前还不能给一个完整的定义。不过,真正的云 *** 作系统应该要具备以下几个特征:可以直接调度CPU,控制CPU计算进程;融合了目前的计算节点管理与单服务器 *** 作系统,在云数据中心实现计算资源的自由调度;整个 *** 作系统横跨云服务器、边缘计算服务器、智能设备三端,实现云边端的协同; *** 作系统上的应用程序主要部署在云服务器,基于云原生实现应用开发,并且一处开发,一处部署,多端接入,多端应用。
我们从 *** 作系统的本质入手来讨论其演进的内在逻辑。大体上看, *** 作系统在整个计算架构中起着承上启下的作用:对下, *** 作系统的主要作用是控制计算、存储、网络和I/O设备;对上,则支撑应用软件,协助应用软件调用计算、存储等软硬件资源。 *** 作系统还通过I/O设备实现人机交互。比如,电脑的人机交互就是鼠标+键盘作为输入,屏幕作为输出;手机的人机交互,主要的输入和输出介质都是屏幕。此外,还有摄像头、扬声器等输入输出设备。
*** 作系统的演进,核心就是针对不同的终端计算设备,来变革对软硬件资源的调用方式,更好的支撑上层应用软件,提供更友好的人机交互方式。
对数据的计算、存储、传输,是整个计算体系的核心,计算机的发展也都是围绕这三个方面来开展的。总体上,计算体系的演进是两条腿走路:一方面,芯片本身提供的计算能力在飞速发展, 以前是CPU的摩尔定律主导,现在则是以AI为核心的异构计算挑大梁,终极形态就是量子计算芯片 。存储芯片也实现了很大的技术进步,存储能力大幅提升。另一方面,传输技术尤其是无限传输技术的进步,则改变着整个计算体系的资源组织方式。最典型的就是数据传输能力的提升,拉近了数据中心与智能终端的“距离”,催生出云计算这种新的计算资源组织方式。云计算并没有提升整个体系的计算能力,而是通过重新组织提升了整个体系的资源利用效率。
传输能力并不是线性增长,而是阶梯式发展的。无限通信技术历经1G/2G/3G/4G,目前正在进行5G通信网络的建设。几年之后,整个 社会 的数据传输能力会得到一次质的飞跃。在整个计算体系中,计算、存储、传输是紧密相关的,传输能力的提升会改变计算、存储资源的组织方式。更大的带宽、更低的延迟,进一步拉近了数据中心(包括边缘计算中心)与智能终端的距离,计算、存储资源会在智能终端和数据中心之间进行重新分配。 一旦整个传输网络可以支撑数据中心和智能终端之间进行大量数据的实时传输,那么计算、存储资源就会向云端集中,终端则“退化”为一个人机交互界面 。手机、电脑的核心是人机交互,只需要保留屏幕、键盘、鼠标等输入输出设备和数据传输设备,无需再保留CPU、存储芯片(即使会保留部分计算、存储能力,低端芯片就完全够用)。智能终端输入数据,传输到云端进行计算、存储,然后传输到终端进行显示。
面对数据中心-智能终端组成的新计算体系,计算、存储、I/O进行了重新分配,在物理上分离开了。这个时候, *** 作系统就需要横跨数据中心和智能终端,根据需要调用相应的计算资源。并且,由于数据中心的服务器承担了大部分的计算、存储功能,对数据中心资源的调配则成为新 *** 作系统的核心。相对而言,对电脑、手机这些终端的调配则显得没那么重要了。
相对于安卓 *** 作系统,鸿蒙并不是重复造轮子,是有重大创新的。最核心的创新就是致力于通过软总线来替换硬总线。在以前的 *** 作系统中,无论是电脑端的Windows系统,还是手机端的Android、IOS系统,在通信线路上都是硬总线。在一整个电路板上通过物理的实体电路来连接各个计算单元(包括计算、存储、I/O),实现各部分数据的传输。
实体电路在空间上有很大限制,如果能够通过无线电磁波来进行各个计算单元的数据传输,就可以在空间上大大解放智能终端。各个计算单元不再必须安装在一个电路板上,在空间上可以实现分离。如果再通过标准化将各个计算单元进行解耦,进而实现不同计算单元的自由组合,这一下子就打开了智能计算的想象空间。如果将几台电脑、手机放在一起,对于以前的 *** 作系统,这些智能设备都是独立的个体,一个系统 *** 作一台设备,不同设备之间没有联系;而 对于鸿蒙 *** 作系统而言,他们不再是独立的设备,而是一堆可以利用的计算单元,是一堆CPU、存储,系统可以根据需要来自由组合这些计算单元 。比如,要运行一个大型 游戏 ,一台电脑的配置不够,就调动周围几台电脑、手机的CPU组成一个计算资源池,共同支撑计算需求。
除了对计算、存储资源的自由调度,软总线技术在I/O设备上有更大的应用潜力。过去几十年,由于芯片制造工艺的快速发展,总体遵循摩尔定律,计算机在CPU、存储上取得很大的提升,以至于现在一台手机提供的计算能力,就超过以前的超级计算机。但是,在I/O设备方面却进展缓慢。除了键盘、鼠标、屏幕,电脑上就增加了一个摄像头和扬声器。很长一段时间,更高像素的摄像头是智能手机厂商之间实现差异化的关键。 如果把智能计算设备与人进行类比,CPU相当于大脑,各种I/O设备相当于四肢,则计算机可谓一直处于“头脑发达,四肢简单”的状态 。
之所以会如此,就是因为不同计算单元需要用硬总线来进行连接。比如,手机摄像头必须要安装在手机上,因而摄像头不能做的很大。如果通过软总线技术,如果把摄像头“拆下来”呢?智能手机只承担核心的计算、存储、显示、交互功能,其他功能通过各种专用设备实现,然后通过电磁波将专用设备与手机连接起来,这些专用设备就像“装在手机里”一样。这种情况下,手机摄像头就解除了物理限制,可以把像素做的很高,甚至与单反相机媲美(事实上,可以直接将单反相机与手机连接起来)。更进一步,为什么不能将手机、电脑与天文望远镜连接起来呢?通过手机、电脑 *** 控望远镜,把看到的美景实时记录下来,还可以分享给好友,或者进行在线直播。
通过软总线技术,鸿蒙 *** 作系统可以让计算机的“四肢”异常的发达。 鸿蒙系统可以“穿透”智能设备,直接利用设备内部的计算、存储、感知单元。在鸿蒙的“眼里”,面对的不再是一个个独立的智能设备,而是一堆可以自由组合的计算模块。 手机、电脑,可以很轻易的与打印机、摄像机、微波炉、电视、空调、洗衣机、冰箱、 汽车 、电表、水表、体重秤、跑步机等设备进行连接。手机是“大脑”,其他设备则是“四肢”。
为什么以前没想到要用软总线来代替硬总线呢?因为以前的无线通信技术很不成熟。总体上看,通过物理线路来进行数据传输,在带宽、传输速度上还是有很大优势。软总线要替换硬总线,就必须要扩大数据传输的带宽,同时提升传输速率,降低延迟,这也是华为鸿蒙系统能否成功的关键。以目前的情况来看,鸿蒙只能说还在路上,软总线技术取得了一些突破,但要完美替换硬总线,依然还有一定距离。
依据相关数据,目前华为鸿蒙的软总线,已经达到18G的带宽、10毫秒延迟、35%的抖动。 10毫秒的延迟,对于一些实时性要求不高的业务场景还可以接受,但对于一些实时控制系统显然还是不够的。所以,鸿蒙接下来的关键就是把数据延迟压下去,把带宽提升来。 这肯定是有很大的技术难度,会涉及到WIFI、蓝牙等通信协议的大幅度修改。如果上述技术指标能够接近硬总线,鸿蒙软总线所带来的优势就会得到释放。依据华为内部的说法,他们目前正致力于攻克分布式计算,有望将软总线的时延压低到微秒级。如果真的可以实现,那鸿蒙必将大放异彩,中国的国产 *** 作系统也才迎来了真正的春天,我们拭目以待吧。
虽然鸿蒙相比于上一代 *** 作系统,已经实现了很大的进步(或者说致力于实现很大的进步,关键在于软总线是否能在时延、带宽上赶上甚至超越硬总线)。但是,鸿蒙很可能不是下一代 *** 作系统的理想形态。与鸿蒙相比,云计算 *** 作系统更具有发展潜力。
那么,云 *** 作系统与鸿蒙 *** 作系统的关键区别是什么呢?
鸿蒙虽然比安卓更进一步,但本质上还是一个本地化的 *** 作系统,核心功能也是调配终端设备的计算资源。 所以,鸿蒙需要安装在手机、电脑、电视这种终端设备上。与之相比,云 *** 作系统则是安装在数据中心的服务器上。或者说,云 *** 作系统的主体在服务器上,终端设备上的系统只是起辅助作用。
云 *** 作系统的核心也在软总线(我们暂且将其定义为软总线,即通过无线通信方式连接不同计算单元),只是其软总线的载体是5G构建的广域网;与之相比,鸿蒙软总线的核心是蓝牙、WIFI等近场通信构建的局域网。在传输领域,有线宽带和无线通信是竞合关系。在无线通信内部,1G~5G网络,也和蓝牙、WIFI存在竞合关系。上一代主要是4G网络与WIFI的竞争,下一代则是5G网络与WIFI的竞争。总体上,大家更看好5G网络。云 *** 作系统将主要建立在5G基础上,有线宽带、WIFI、蓝牙也会发挥作用。
数据的计算、存储由数据中心(包括边缘数据中心)的服务器来完成,智能终端主要保留两个功能,数据收集和人机交互。云 *** 作系统横跨云端服务器和智能终端来实现资源调配。要实现这个目标,关键是5G网络在带宽、时延、稳定性这些技术指标上能否达到硬总线的水平。与4G基站不同,5G将是宏基站与微基站(甚至更小的皮基站)相互配合,微基站或者皮基站其实就相当于室内WIFI。 从理论上来看,核心光通信网络+5G宏基站+5G微基站+皮基站,是可以实现对整个数据传输链路的全覆盖的。云 *** 作系统也必然是基于5G,将5G通信网络作为其“软总线”的载体。
当然,以上只是对理想情况的设想。 目前,无论是5G还是云计算,都还处于初级发展阶段,5G技术还没成熟,5G网络覆盖也远未完成。尤为关键的是,5G网络在带宽、延迟这些技术性能上与硬总线相比还存在不小的差距。总体上看,5G和云计算的技术发展很快,协同效应越来越明显。 通过5~10年的时间,5G的带宽、延迟指标会得到大幅度提升,5G网络的建设也基本成熟。再加上边缘计算的发展,云数据中心-边缘计算中心-智能终端,将形成紧密配合的计算体系,届时就可以支撑云 *** 作的发展。
我们不妨大胆设想一下,加入实现了云 *** 作系统,整个计算体系会面临什么样的变革。云 *** 作与原来的 *** 作系统有什么不同,与鸿蒙所代表的物联网 *** 作系统又有什么不同。云 *** 作系统可以实现鸿蒙系统的一系列设想,而且可以比鸿蒙做的更好。下面,我们来具体分析。
下一代 *** 作系统一定是面向物联网的,需要基于物联网设备来进行设计。在物联网领域有一个根本的难题——如何平衡设备智能化与成本控制?
某种程度上,计算能力就是智能程度。一个设备能够提供的算力越强,能够解决的问题就越多。计算能力的主要载体是芯片,越强的芯片越贵。 按照以往的逻辑,要对一台设备进行智能化改造,核心就是通过嵌入更强大的芯片来让其具备计算能力,这必然会大幅增加设备的成本。
在为物联网设计 *** 作系统时,有两个因素需要重点考虑:
物联网设备数量巨大,因此必须降低成本。 如果每台物联网设备都安装芯片,这样的成本是难以承受的。试想一下,台灯、冰箱、空调,甚至水表、电表,都安装CPU和存储芯片,这些设备的价格必然会大幅度上升(目前物联网设备中的各种嵌入式芯片计算能力较弱,比电脑、手机芯片所能提供的计算能力小很多,因而其智能化程度有限)。
物联网设备的核心在于感知和控制,不在于计算。 未来,不仅家庭里会有各种智能设备,城市中也会密布各种传感器来监控城市的水、电、气等供应体系的状态。这些物联设备,核心作用是传感器和控制器,一方面将感知到的图像、电压等数据传入系统,另一方面依据指令来进行相应的 *** 作,比如关闭阀门、调整摄像头角度等。
基于物联网设备的特点,要解决上述成本与智能化的矛盾,最好的办法就是将计算与感知、 *** 控分离开来:物联网终端承担数据感知和 *** 控的功能,把数据计算功能放到云端或者边缘计算端来完成。通过云 *** 作系统,物联网设备可以安心做“四肢”,而将“大脑”放在云端或边缘端的服务器上。物联网设备上不用安装昂贵的芯片,依然可以获得强大的数据计算能力,以此来实现低成本的智能化改造。
将数据计算功能从物联网终端剥离出来,还有一个很重要的作用,那就是推动物联网设备在计算上的标准化。
我们知道, *** 作系统跟计算芯片是高度耦合的。电脑上的微软 *** 作系统+英特尔芯片,手机端的安卓系统+高通芯片都是如此。 *** 作系统往往与芯片相互配合,共同演进。无论是英特尔的电脑芯片,还是高通的手机芯片,都是高度标准化的。与之不同,物联网设备中的嵌入式芯片却是各式各样、千差万别,这就为 *** 作系统的发展设置了很大的障碍。如果在芯片上不能实现统一,要用一套 *** 作系统去适配多种多样的物联网芯片,系统性能必然会大打折扣。
如果通过云边端协同的方式,把物联网设备的计算芯片统一放到云端或者边缘端的服务器上,则可以很好地解决这个问题。服务器上的芯片是可以做到高度统一的,云 *** 作系统只需要适配云服务器上的芯片。 *** 作系统是调用硬件资源来完成计算任务,如果将计算任务集中到云端,那就屏蔽了本地终端设备的差异性。在云 *** 作系统看来,无论是电脑、手机、平板还是车机、电视,本质上都是一块屏幕, *** 作起来都一样。
鸿蒙+物联网嵌入式芯片,只是一种过渡方案,终极方案还是云 *** 作系统+云端标准计算芯片的方式。当然,实现上述的云边端协同是一条漫长的道路。在未来几年内,物联网上的嵌入式芯片依然会是主流方案。 这种情况下,华为的鸿蒙系统就不得不要去兼容各种各样的嵌入式芯片,这是一个很大的难题。 不过反过来看,通过鸿蒙系统来倒逼物联网芯片的标准化,也可以推动我国芯片和物联网产业的发展,这也算鸿蒙的一大贡献。
以上从硬件计算资源的调度方面来分析云 *** 作系统的优势。下面,我们从应用软件的角度来看看云 *** 作系统可能的未来。
在计算架构中, *** 作系统与芯片耦合,应用软件则与 *** 作系统耦合。同样的一个应用软件,如果要从一个 *** 作系统迁移到另一个 *** 作系统,需要重新开发。比如电脑端的微信和手机端的微信,虽然功能都一样,腾讯却要要基于Windows和安卓系统开发两次。同样在移动端,微信也要基于苹果的IOS系统再开发一次。 功能都一样,却因为不同的 *** 作系统重复开发多次,这无疑是巨大的浪费。 试想一下,面对各式各样的物联网设备,如果软件厂商也要对不同的设备进行多次开发,那简直不能忍受。
所以,一次开发,多端适配,是物联网 *** 作系统的刚需,这也是鸿蒙尽力要实现的目标。 *** 作系统是与计算芯片耦合的,面对多样化的嵌入式物联网芯片,鸿蒙必然要做出一些个性化适配,上面承载的应用软件也要做出相应的适配,这会增加一些开发难度。如果强行屏蔽底层芯片的差异,很可能会损害系统的性能,表现出来就是系统容易卡、稳定性差。
如果是云 *** 作系统,由于计算芯片本身就是统一的,云 *** 作系统主体部署在云端服务器上。相应的,上层应用的主体也部署在云服务器上。终端设备就是一个人机交互界面,大部分情况就是一块触摸显示屏(在部分场景中再加上语音交互)。终端智能设备是一个访问云端应用的入口。无论是从手机、电脑还是电视、车机,甚至是从电冰箱、电梯广告屏幕上访问,接入的都是云端的同一个应用软件。这天然就没有应用适配的问题。
鸿蒙想要实现的是一处开发多端部署。而云 *** 作系统可以实现的是一处开发,一处部署,多端应用。这种方式,在应用软件的标准化、性能表现等方面,比多端部署的方案更优。
我们以一个应用场景来举例说明:
华为鸿蒙项目负责人在一次媒体采访中提到,鸿蒙的目标是让应用跟着人走,而不是锁定在特定的设备上。比如,当用户用手机与家人进行视频通话时,不用一直拿着手机,当用户走到客厅的时候,视频电话就自动接到电视上。这如果能实现,真的是一个很大的进步。现在的 *** 作系统,别说手机和电视打通,就是手机与平板电脑都不能打通。
在这个方案中,手机和电视都安装了鸿蒙系统,这毕竟是两个独立的设备,视频应用需要从手机传到电视上。我们用传球来做类比:面对一个运动的人,如何更好地把球传到他手里呢?目前的安卓、IOS *** 作系统,球只能锁定在一个人手里,如果用户离开这个是没办法拿到球的;鸿蒙要实现的是,有多个人进行相互传球,当用户离开A走到B附近时,A就把手里的球传给B,然后B再把球传给用户;云 *** 作系统的解决方案是,球依然只在A手里,但A站的比较远,传球能力很强,无论用户走到那里,他都可以把球直接传过去。这样,就省去了中间把球从A传到B的过程。
目前,云计算的重心,已经从基础设施的虚拟化转向云原生应用的开发。云原生应用的目标就是一处开发,多端应用。 届时,本地终端是只是一个网络接入和人机交互的设备,并不需要部署应用。每个人有特定的应用账户,这个账户与其生物特征绑定(比如人脸、指纹),从任何终端都可以轻易接入云端应用中心,真正实现应用随人走。
电脑、手机作为个人应用的私密性将大大降低。每个人的电脑、手机之所以私密性强,最关键的是很多数据存储在本地端,并且,每个人下载的应用软件也不同,桌面的布局也独具特色。自己电脑用习惯了,别人的电脑用起来就总会感觉别扭。在云 *** 作系统时代,这一切都会改变。本地终端几乎不再存储数据,别人拿着你的电脑,只要不能登录你的账户,也看不到你的任何信息。此外,云端不仅存储个人数据,也会存储你的电脑和手机桌面,你安装了什么软件,这些软件如何布局的,都可以完整的还原出来。
电脑、手机本质上就是一块屏幕,跟安装在 汽车 、冰箱、洗衣机上的屏幕没什么区别,都只是接入云数据中心的一个入口而已。 当你自己没带电脑,借用同事电脑办公时,只需登录自己的云端账户,同事电脑桌面立马跟你的一模一样。用完退出账户之后,你的一切使用记录在本地端都消失了(实际上本地端本来就没有做任何数据记录,只是一个显示屏)。你挥一挥衣袖,不带走一片云彩,你和你的同事都没有数据安全的担忧。
更进一步的,大部分设备都退化为屏幕后,设备本身的价值就大大降低了,整个智能硬件的商业模式将发生根本的变革。手机、电脑终端由于不再追求高配置的计算和存储芯片,成本大幅度降低,进而这些电子产品的价格大幅度降低。原先6000元的电脑、手机,也许只需要2000元。另一方面,消费者虽然不需要买芯片,但需要为使用芯片付费。依据对计算、存储、网络资源的消耗量,以及使用的时间来进行付费。比如,用1000元的手机可以玩王者荣耀,看4K,但是每小时需要付费1元钱。 与企业端的云服务类似,个人消费者市场也全面进入云服务时代。
这对于用户也是有好处的:在C端的计算领域也实现“以租代售”,不用一次性付出几千元来购买昂贵的电子设备,有助于改善用户现金流;用户可以获得几乎无限的计算能力,突破单台设备的算力限制。当需要运行大型 游戏 的时候,可以获得超高的算力配置,并且只为这一段时间付费。单个用户只要愿意付费,可以通过获得目前超级计算机一样的计算能力。
如果将应用部署在云端,实现应用随人走,届时,各种触摸屏可能在城市中随处可见(毕竟,只是一块屏幕,成本比电脑要低很多),这些屏幕可以作为共享计算机。用户可以通过指纹识别、人脸识别等方式,在任何屏幕上便捷地登陆自己的云端账户,将这块屏幕变成自己的计算机。使用完毕退出账户后,设备上不会留有任何痕迹,也没有数据泄露的风险。这对于经常需要移动办公的人而言,会带来巨大的便利,他们不用再背着一台电脑到处跑,因为“电脑”随处可见,用完即走。
综上, 鸿蒙比目前的安卓系统更进一步,但依然不是最终的方案。 需要指出的是,云 *** 作系统是需要一定的前提条件的,5G网络要足够成熟强大,云边端协同体系已经完备,这需要很长的时间来完善。在这个过程中,鸿蒙系统不失为一种很好的方案。
最后,我们再来看看在云 *** 作系统领域,都有哪些玩家。大体来看,云 *** 作系统会有三类玩家:以往的 *** 作系统企业,领先的云计算企业,互联网应用巨头。
*** 作系统本身具有一定的连续性,微软、谷歌、苹果这类 *** 作系统厂商,在云 *** 作系统领域依然会是重要玩家,并且,他们依然具有很强的竞争优势。尤其是微软,其服务器 *** 作系统占据最大的市场份额,会慢慢向真正的云 *** 作系统演进。华为目前已经推出了鸿蒙,虽然鸿蒙不是终极的云 *** 作系统,但却是目前最好的物联网 *** 作系统。通过鸿蒙进化成云计算 *** 作系统,也比安卓等系统更方便。并且,鸿蒙在软总线技术上有积累,再加上华为领先的5G,华为云也具有不熟的实力,因而华为鸿蒙是未来云 *** 作系统的有力竞争者。
除了 *** 作系统企业,头部云计算巨头也是未来云 *** 作系统的有力竞争者。(再次说明下,目前云厂商所声称的云 *** 作系统,实际上是云资源管理平台,还不是真正的云 *** 作系统)。阿里云、AWS、谷歌云等,将其目前所谓的云 *** 作系统进行升级,做成真正的 *** 作系统,也未可知。
此外,还存在一类云 *** 作系统玩家,那就是个别互联网应用巨头。最典型的就是腾讯(微信),其次是阿里巴巴(钉钉)。以微信为例,通过小程序,把自己变成一个应用开发平台,微信本身 *** 作系统化。微信账户就是云 *** 作系统的账户,登陆微信然后打开各种小程序,跟登陆云桌面打开各种应用软件类似。因此,微信也是 *** 作系统的重要玩家。此外,钉钉也在逐步把自己变成开发平台,也在 *** 作系统化。
在未来的云 *** 作系统之争中,中国将是美国的有力竞争者。国内华为、阿里巴巴、腾讯,都将是重要玩家。可以预见,未来的 *** 作系统,不再只是美国的企业的天下。中国 *** 作系统的自主化,是值得期待的。
文:凝视深空 / 数据猿
我们身边的共享单车即应用了物联网技术,《物联网时代》将物联网定义为:“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊认为,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
连接带来了时代的需求的变化,当世界上有十亿网民的时候,Facebook就自然的出现了。
如果你仔细地观察过去25年里的科技企业,你就会发现变化一直在发生。
每隔3-7年,企业就必须对它们进行重塑。那些错过了一次技术转型的公司如果能迎头赶上的话,那么还有可能重新恢复过来。而那些错过了两次技术转型的公司,则有可能已经消失了。如果你有兴趣的话,可以查看一下50年前标准普尔500强公司的名单,如果统计无误的话,截止到2017年,只有19%的企业现在依然存在。
当我们在网络上看着90后“佛系”“中年人”的话题捧腹大笑的时候,其实我们没有看到这背后透露着的真正原因是:90后们生活在“变的太快”的世界里,太多学习工作生活里的问题他的上一辈甚至前一代人都没有遇到过,他们的迷茫那么大,以至于有些人认为:至于以不变应万变才是“正解”。
而如果我们把这件事扩展的更大一些,无论我们的真实年龄如何,我们都注定属于将遭遇革命性变革的一代人。这也正是马切伊克兰兹(Maciej Kranz)将每一个商业领域正经历“革命性变革”的这一代人叫做“物联网一代”的原因。
什么是物联网?
一个相对繁琐的解释是:
物联网是互联网的一个延伸。互联网的终端是计算机(PC、服务器),我们运行的所有程序都是计算机和网络中的数据处理和数据传输,没有涉及任何其他的终端。而未来,所有物和物之间都可以实现互联。物联网能够让互联网连接对象使用嵌入式传感器进行数据收集和交换的网络,汽车,厨房电器,甚至心脏监视器都可以通过物联网连接。随着物联网在未来几年的发展,更多的电子设备将加入物联网的阵营。
而在《物联网时代》中,物联网有一个更为简单明了的定义,它是“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊·克兰兹是全球物联网专家,思科公司战略创新集团副总裁。在本书中,他基于思科的工作视野和在全球物联网行业一线的长期实践经验,从数十个他参与实施的物联网案例中,总结出4种已经获得验证的、可以快速回报的场景。顺带提一下,思科公司的主营业务就是物联网。
总的来看,物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。在这个意义上说,物联网是一个很大的概念。如果单从学科上分解来看的话,它涉及到通信,信号处理,计算机视觉,自动化控制,电路系统,信息融合,无线自组织网络,MEMS传感器设计等等。
可以说,这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。实际上,大数据概念最早的提出,也是因为物联网的兴起,传感器接入网络之后,大大增加了可以挖掘的数据量,网络上的数据不但包括社交网络这种来自用户的数据,还有了来自物理世界的数据。
物联网发展速度为什么这么慢?
正如马切伊在他的书中提到的那样,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
它的本质便是上个世纪学术界开始兴起传感器网络、自组织及多跳网络(wireless sensor network, ad-hoc network, wireless multi-hop network)。RFID在智能物流上的应用只是最为基本的应用场景,当前的研究远比这个更为复杂。但是,受限于应用场景和技术实现的瓶颈,物联网的发展,其实无法像互联网那样爆发。
首先,现阶段的物联网应用基本都是“锦上添花”的东西,需求性并没有那么强,如可穿戴设备和智能家居,这也就是为什么很多智能硬件叫好不叫座的根本性原因;也正是因为这个原因,商业上也不会出现滴滴打车那样的持续性投入,这又反向钳制了这一技术的商业化发展。
其次,物联网技术上还有很多没有突破。最大的技术瓶颈可能在MEMS传感器的性能和无线传感网的设计实现上。
再有,就是目前在应用上还找不到突破。目前比较活的也就是智能硬件,无人机,工业物联网这块。但是离人类和互联网形成的应用需求还无法相比,目前还没出现。
最终,物联网应用的制约因素还是能源,物联网应用场景的扩展一直在等待电池技术的突破。所以,目前来说物联网首先会在那些对能量要求不是很高的方向首先取得突破,比如智能硬件和工业设备上。
总之,物联网的方向毋庸置疑有着广阔的发展前景,但是当前基础研究和相关技术还有待发展,因此看起来发展缓慢,甚至就是停滞,学术和商业界都在等待一个颠覆性应用可以让“物联网”来一次诈尸。
共享单车中的物联网技术
完全可以想象,物联网的技术前景是广阔的。
实际上,2016年底兴起的共享单车就是一个成功的物联网商业化作品。
看似简单的单车使用过程,包括了物联网技术,人联网技术(移动互联网),自动控制技术,GPS全球定位技术等多个技术领域。但是整体的技术实现并不复杂,并没有涉及到什么创新黑科技。
首先,一辆单车需要以下几样设备参与运作:
•单车上面的智能锁(这个是核心关键,包括了GPS定位模块,GPRS通讯模块,主控芯片,电控锁模块等)
•用户手中的手机和APP
•单车提供商的云服务器(平台)
关键的环节在于单车和云服务器之间的通讯,采用的是老旧的GPRS技术。为什么要用这种落后的2G技术呢? 不使用LTE呢?答案很简单: 省钱省电覆盖好。
共享单车是典型的物联网应用场景,也能很好的克服我们之前说的物联网现存的耗能的问题。它对网络的要求并不是大数据量(它只需要很少很小的几条消息),而且它不需要速度很快(几秒钟的时延,完全可以忍受),它需要很低的功耗和很长的待机时间。
早期阶段,共享单车甚至依靠短信和云服务器进行通信,所以等待解锁的时间比较久,大约需要6-10秒。
还有一个小细节,不知道有没有人遇到过。我曾经用过一次支付宝旗下集成的一款市面上不太流行的单车品牌,扫码之后,手机提示我:锁没电了。这是我第一次意识到,原来单车的锁需要电!?
当然,正因为共享单车智能锁有这么多模块,所以它当然要耗电的。
为什么早期的单车骑起来特别累?除了一些材料和工学设计的原因,也是因为:你在充当人肉发电机。后来,为了改善用户体验,开始流行太阳能充电了。所以,越来越多的单车装上了太阳能发电板(如下图)。
经过过去一年半的迭代和升级,现在市面上所有的单车使用体验相比最早的那一批已经有了质的飞跃。
同时,近些年上市的一些空气净化器,穿戴设备以及家庭环境监控设备也已经完成了一代代的自我迭代和进化,在目前的消费场景下,服务着千家万户,这正是物联网技术未来商业化发展的一个缩影。
如何顺势借力风口,成为一名成功的物联网创业者或者职场精英?
BI Intelligence 预计:到 2020 年,地球上将有超过 240 亿的物联网设备,约为人均 4 台,当我们接近这个阶段时,60 亿美元将流入物联网解决方案,包括应用程序开发,设备硬件,系统集成,数据存储等。然而这些投资在 2025 年将产生 13 万亿美元的效益。
然而正如前面所说的,基于一些目前无法攻关的技术难题,它的商业前景也是复杂的,特别是对于创业者而言,这不是一个好消息。创业者大部分都是小公司,无论多么先进的技术,一旦市场成熟,目前的互联网大鳄公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。
而且,目前全世界范围内,也已经有多家物联网平台已经初具规模,比如Amazon Web 服务、Microsoft Azure、ThingWorx 物联网平台、IBM 的沃森、思科物联网云连接、Salesforce IoT 云、Oracle 集成云以及 GE Predix。
因此,物联网行业的创业者应该处理好两个问题。
首先,科技行业想突破垄断,对于微软和IBM这样的大企业而言,是技术积累。对于我们这样的个人或小团队而言,最好的方法是缩小目标客户群体,专注于某一个具体的领域或者攻关一项技术去解决某一个具体的问题。主动缩小目标客群的好处就是大企业不容易来抢市场,而你我们相对容易找到目标客户,最终说服他们买你的产品。
其次,以热门概念 *** 作以达到融资目的,而从不关心成本和收入是最错误的做法。
总结来看,就是组建一个相对小型的团队来维护一款小产品或者一个项目,这样可能反而容易成功,比如团队或项目被大公司收购。
如果你只是想成为一个工作体面收入又高的技术工作者和相关从业者,有一条相对明确的职业发展方向可以借鉴:学Java,去一家当地比较有名的计算机类企业应聘;取得一定成绩后,跳槽至国内一线物联网公司;3-5年后,有机会跳槽去国际一线企业在华公司应聘,如前面所说的这几个大型的物联网平台。如果在继续在里面服务几年,等到物联网技术真正实现商业化爆炸的那一天,你绝对已经可以斩钉截铁向别人介绍说:你好,我是物联网行业的资深行业顾问!就像我们前文提到的《物联网时代》作者马切伊先生一样。
就算不完全复制这条路,普通人想要搭上物联网这班车也不是没有可能的。毕竟,物联网的范围其实极其广泛。无论是大数据分析师、GPS定位还是井下探测,都可以算是物联网的一部分。只不过,程序猿是物联网现阶段发展时期,需求最大平均工资最高的工种而已。
以上由物联传媒提供,如有侵权联系删除
物联网域名就是给目标对象分配一个地址以及容易记忆的中英文名称。例如传统的互联网通过IP地址以及标识名称(Domain Name 域名)来管理网络节点或网络设备。同样,物联网也需要给物品分配地址以及标识名称(按照约定俗成便于理解,也同样可称为域名)现在的物联网域名是全球绝大多数国家包括中国在 内参加的国际ISO(国际标准组织)、ITU(国际电信联盟)组织共同制定并遵守的标准,也是我国国家标准。中国由工业信息化部负责管理。全球的注册量已经达到100,000,000以上,中国的农业部、公安部、国家 密码局,国家卫生计划委员会、供销总社等几千家单位,数百亿物品都已经使用该标准进行联网。各国服务器也早已开始解析。我国在该领域主导着国际物联网标准,也是中国逐步跻身世界网络强国的标志事件之一。
物联网域名使用规则是:
第一:解析到物联网云服务器上面,
第二:通过物联网浏览器打开物联网域名,
第三:可以通过物联网域名查询物品的相关信息有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。
1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。
国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。
国外有亚马逊、IBM、SAP、
谷歌、GE、西门子、博世等。
通过以上名单可以发现,这些公司的特点。
这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。
2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。
3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。
物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?
最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。
以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。
不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型
1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。
物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。
在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。
因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。
物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰
伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。
中心化的物联网架构存在三个问题。
一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。
其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。
第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。
简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。
边缘算力的应用场景到底有多广阔?
边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)
第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。
无人驾驶技术:
无人驾驶
智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:
一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。
二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。
三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。
其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。
机会很大
物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。
通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点
连接数告诉增长是物联网行业发展基础
物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。
物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。
物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。
物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等
物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)