2021年12月1日,亚马逊云 科技 在2021 re:Invent全球大会上宣布推出Amazon IoT TwinMaker,可以让开发人员更加轻松、快捷地创建现实世界的数字孪生,如楼宇、工厂、工业设备和生产线。
数字孪生是物理系统的虚拟映射,可根据其所代表的现实世界对象的结构、状态和行为定期更新。Amazon IoT TwinMaker让开发人员可以轻松汇集来自多个来源(如设备传感器、摄像机和业务应用程序)的数据,并将这些数据结合起来创建一个知识图谱,对现实世界环境进行建模。客户可以通过Amazon IoT TwinMaker,使用数字孪生来构建反映现实世界的应用程序,提高运营效率并减少停机时间。使用Amazon IoT TwinMaker无需预付费用,客户只需为使用的服务付费。
开发人员可以将Amazon IoT TwinMaker连接到设备传感器、视频源和业务应用程序等数据源,快速开始构建设备、装置和流程的数字孪生。为方便从各种数据源收集数据,Amazon IoT TwinMaker包含适用于Amazon IoT SiteWise、Amazon Kinesis Video Streams和Amazon S3的内置连接器(客户也可以为Amazon Timestream或Snowflake等数据源添加自己的连接器)。
Amazon IoT TwinMaker会自动创建一个知识图谱,整合并理解所连接数据源的关系,因此它可以使用被映射系统的实时信息更新数字孪生。客户可以将现有的3D模型(例如CAD和BIM文件、点云扫描等)直接导入Amazon IoT TwinMaker,轻松创建物理系统(例如楼宇、工厂、设备、生产线等)的3D视图,并将知识图谱中的数据叠加到3D视图上,创建数字孪生。
数字孪生创建完毕后,开发人员就可以使用适用于Amazon Managed Grafana的Amazon IoT TwinMaker插件创建基于Web的应用程序,在工厂 *** 作员和维护工程师用于监控和检查设施和工业系统的设备上,即可显示该应用程序的数字孪生。例如,开发人员可以通过将来自工厂设备传感器的数据与运行中的各种机器的实时视频以及这些机器的维护 历史 相关联,创建金属加工厂的虚拟映射。然后,开发人员可以设置规则,在检测到工厂熔炉中的异常情况(例如温度已超过阈值)时向工厂 *** 作员发出警报,并在工厂 3D 模型的熔炉实时视频中显示这些异常,这可以帮助 *** 作员在熔炉发生故障之前快速做出预测性维护决策。
亚马逊云 科技 IoT总经理Michael MacKenzie表示:“客户对有机会使用数字孪生来改善其运营和流程感到兴奋,但为不同使用场景创建数字孪生和自定义应用程序所涉及的工作复杂且昂贵,令大多数企业望而却步。Amazon IoT TwinMaker包括大多数客户构建数字孪生模型所需的内置功能,例如连接不同来源的数据,建模物理环境,以及可视化具有空间维度的数据。Amazon IoT TwinMaker的推出让更多客户可以全面了解他们的工业设备、设施和流程,实时监控和优化其运营的各个环节。”
Amazon IoT TwinMaker现已在美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、亚太地区(新加坡)和欧洲(爱尔兰)区域提供预览,其他区域也将很快推出。
目前,已有一些企业使用了Amazon IoT TwinMaker进行数字化升级。
开利(Carrier Global)是一家建筑与冷链解决方案提供商。“通过我们的Abound平台,我们可以从各种系统和传感器中汇总楼宇性能数据,让客户实时了解其互联空间。为物业主和运营商提供数字孪生以增强该平台一直是我们的首要任务。”开利数字化和云高级总监Dan Levine表示:“然而,内部开发这一能力并非易事,面临着成本高昂、进展缓慢等一系列问题。通过Amazon IoT TwinMaker,我们发现了可以显著加快Abound平台技术战略的关键推动力。Amazon IoT TwinMaker将帮助我们的开发团队专注于快速创建差异化的客户成果,既不用将大量精力投入到繁重的数字孪生数据抽象工作中,也无需向我们的解决方案添加3D可视化。”
另一个典型案例是埃森哲。制造业的数字化转型对埃森哲的客户而言是一个巨大的机会,但他们经常会面临零散、孤立和非结构化工业数据的挑战,导致许多概念验证无法扩展。埃森哲Industry X行业数字制造与运营全球技术主管Maikel van Verseveld认为:“我客户希望在开始并扩展他们的数字化制造之旅时,拥有能够快速应对这些挑战的工具。通过Amazon IoT TwinMaker,他们现在可以轻松地创建数字孪生,从不同的 IT 和 OT 系统中获得更加情境化、数据驱动和实时的制造运营视图,从而让最终用户可以做出更好的决策并优化运营。通过埃森哲与亚马逊云 科技 紧密协作的团队,我们已经能够开始借助Amazon IoT TwinMaker为客户带来价值。”
关于亚马逊云 科技
超过15年以来,亚马逊云 科技 (Amazon Web Services)一直以技术创新、服务丰富、应用广泛而享誉业界。亚马逊云 科技 一直不断扩展其服务组合以支持几乎云上任意工作负载,目前提供超过200项全功能的服务,涵盖计算、存储、数据库、网络、数据分析、机器学习与人工智能、物联网、移动、安全、混合云、虚拟现实与增强现实、媒体,以及应用开发、部署与管理等方面;基础设施遍及25个地理区域的81个可用区(AZ),并已公布计划在澳大利亚、加拿大、印度、印度尼西亚、以色列、新西兰、西班牙、瑞士和阿联酋新建9个区域、27个可用区。
常见的大数据术语表(中英对照简版):A
聚合(Aggregation) – 搜索、合并、显示数据的过程
算法(Algorithms) – 可以完成某种数据分析的数学公式
分析法(Analytics) – 用于发现数据的内在涵义
异常检测(Anomaly detection) –
在数据集中搜索与预期模式或行为不匹配的数据项。除了“Anomalies”,用来表示异常的词有以下几种:outliers, exceptions,
surprises, contaminants他们通常可提供关键的可执行信息
匿名化(Anonymization) – 使数据匿名,即移除所有与个人隐私相关的数据
应用(Application) – 实现某种特定功能的计算机软件
人工智能(Artificial Intelligence) –
研发智能机器和智能软件,这些智能设备能够感知周遭的环境,并根据要求作出相应的反应,甚至能自我学习
B
行为分析法(Behavioural Analytics) –
这种分析法是根据用户的行为如“怎么做”,“为什么这么做”,以及“做了什么”来得出结论,而不是仅仅针对人物和时间的一门分析学科,它着眼于数据中的人性化模式
大数据科学家(Big Data Scientist) – 能够设计大数据算法使得大数据变得有用的人
大数据创业公司(Big data startup) – 指研发最新大数据技术的新兴公司
生物测定术(Biometrics) – 根据个人的特征进行身份识别
B字节 (BB: Brontobytes) – 约等于1000 YB(Yottabytes),相当于未来数字化宇宙的大小。1
B字节包含了27个0!
商业智能(Business Intelligence) – 是一系列理论、方法学和过程,使得数据更容易被理解
C
分类分析(Classification analysis) – 从数据中获得重要的相关性信息的系统化过程; 这类数据也被称为元数据(meta
data),是描述数据的数据
云计算(Cloud computing) – 构建在网络上的分布式计算系统,数据是存储于机房外的(即云端)
聚类分析(Clustering analysis) –
它是将相似的对象聚合在一起,每类相似的对象组合成一个聚类(也叫作簇)的过程。这种分析方法的目的在于分析数据间的差异和相似性
冷数据存储(Cold data storage) – 在低功耗服务器上存储那些几乎不被使用的旧数据。但这些数据检索起来将会很耗时
对比分析(Comparative analysis) – 在非常大的数据集中进行模式匹配时,进行一步步的对比和计算过程得到分析结果
复杂结构的数据(Complex structured data) –
由两个或多个复杂而相互关联部分组成的数据,这类数据不能简单地由结构化查询语言或工具(SQL)解析
计算机产生的数据(Computer generated data) – 如日志文件这类由计算机生成的数据
并发(Concurrency) – 同时执行多个任务或运行多个进程
相关性分析(Correlation analysis) – 是一种数据分析方法,用于分析变量之间是否存在正相关,或者负相关
客户关系管理(CRM: Customer Relationship Management) –
用于管理销售、业务过程的一种技术,大数据将影响公司的客户关系管理的策略
D
仪表板(Dashboard) – 使用算法分析数据,并将结果用图表方式显示于仪表板中
数据聚合工具(Data aggregation tools) – 将分散于众多数据源的数据转化成一个全新数据源的过程
数据分析师(Data analyst) – 从事数据分析、建模、清理、处理的专业人员
数据库(Database) – 一个以某种特定的技术来存储数据集合的仓库
数据库即服务(Database-as-a-Service) – 部署在云端的数据库,即用即付,例如亚马逊云服务(AWS: Amazon Web
Services)
数据库管理系统(DBMS: Database Management System) – 收集、存储数据,并提供数据的访问
数据中心(Data centre) – 一个实体地点,放置了用来存储数据的服务器
数据清洗(Data cleansing) – 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性
数据管理员(Data custodian) – 负责维护数据存储所需技术环境的专业技术人员
数据道德准则(Data ethical guidelines) – 这些准则有助于组织机构使其数据透明化,保证数据的简洁、安全及隐私
数据订阅(Data feed) – 一种数据流,例如Twitter订阅和RSS
数据集市(Data marketplace) – 进行数据集买卖的在线交易场所
数据挖掘(Data mining) – 从数据集中发掘特定模式或信息的过程
数据建模(Data modelling) – 使用数据建模技术来分析数据对象,以此洞悉数据的内在涵义
数据集(Data set) – 大量数据的集合
数据虚拟化(Data virtualization) –
数据整合的过程,以此获得更多的数据信息,这个过程通常会引入其他技术,例如数据库,应用程序,文件系统,网页技术,大数据技术等等
去身份识别(De-identification) – 也称为匿名化(anonymization),确保个人不会通过数据被识别
判别分析(Discriminant analysis) –
将数据分类;按不同的分类方式,可将数据分配到不同的群组,类别或者目录。是一种统计分析法,可以对数据中某些群组或集群的已知信息进行分析,并从中获取分类规则。
分布式文件系统(Distributed File System) – 提供简化的,高可用的方式来存储、分析、处理数据的系统
文件存贮数据库(Document Store Databases) – 又称为文档数据库(document-oriented database),
为存储、管理、恢复文档数据而专门设计的数据库,这类文档数据也称为半结构化数据
E
探索性分析(Exploratory analysis) –
在没有标准的流程或方法的情况下从数据中发掘模式。是一种发掘数据和数据集主要特性的一种方法
E字节(EB: Exabytes) – 约等于1000 PB(petabytes), 约等于1百万 GB。如今全球每天所制造的新信息量大约为1
EB
提取-转换-加载(ETL: Extract, Transform and Load) –
是一种用于数据库或者数据仓库的处理过程。即从各种不同的数据源提取(E)数据,并转换(T)成能满足业务需要的数据,最后将其加载(L)到数据库
F
故障切换(Failover) – 当系统中某个服务器发生故障时,能自动地将运行任务切换到另一个可用服务器或节点上
容错设计(Fault-tolerant design) – 一个支持容错设计的系统应该能够做到当某一部分出现故障也能继续运行
G
游戏化(Gamification) –
在其他非游戏领域中运用游戏的思维和机制,这种方法可以以一种十分友好的方式进行数据的创建和侦测,非常有效。
图形数据库(Graph Databases) –
运用图形结构(例如,一组有限的有序对,或者某种实体)来存储数据,这种图形存储结构包括边缘、属性和节点。它提供了相邻节点间的自由索引功能,也就是说,数据库中每个元素间都与其他相邻元素直接关联。
网格计算(Grid computing) – 将许多分布在不同地点的计算机连接在一起,用以处理某个特定问题,通常是通过云将计算机相连在一起。
H
Hadoop – 一个开源的分布式系统基础框架,可用于开发分布式程序,进行大数据的运算与存储。
Hadoop数据库(HBase) – 一个开源的、非关系型、分布式数据库,与Hadoop框架共同使用
HDFS – Hadoop分布式文件系统(Hadoop Distributed File
System);是一个被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统
高性能计算(HPC: High-Performance-Computing) – 使用超级计算机来解决极其复杂的计算问题
I
内存数据库(IMDB: In-memory) –
一种数据库管理系统,与普通数据库管理系统不同之处在于,它用主存来存储数据,而非硬盘。其特点在于能高速地进行数据的处理和存取。
物联网(Internet of Things) – 在普通的设备中装上传感器,使这些设备能够在任何时间任何地点与网络相连。
J
法律上的数据一致性(Juridical data compliance) –
当你使用的云计算解决方案,将你的数据存储于不同的国家或不同的大陆时,就会与这个概念扯上关系了。你需要留意这些存储在不同国家的数据是否符合当地的法律。
K
键值数据库(KeyValue Databases) –
数据的存储方式是使用一个特定的键,指向一个特定的数据记录,这种方式使得数据的查找更加方便快捷。键值数据库中所存的数据通常为编程语言中基本数据类型的数据。
L
延迟(Latency) – 表示系统时间的延迟
遗留系统(Legacy system) – 是一种旧的应用程序,或是旧的技术,或是旧的计算系统,现在已经不再支持了。
负载均衡(Load balancing) – 将工作量分配到多台电脑或服务器上,以获得最优结果和最大的系统利用率。
位置信息(Location data) – GPS信息,即地理位置信息。
日志文件(Log file) – 由计算机系统自动生成的文件,记录系统的运行过程。
M
M2M数据(Machine2Machine data) – 两台或多台机器间交流与传输的内容
机器数据(Machine data) – 由传感器或算法在机器上产生的数据
机器学习(Machine learning) –
人工智能的一部分,指的是机器能够从它们所完成的任务中进行自我学习,通过长期的累积实现自我改进。
MapReduce – 是处理大规模数据的一种软件框架(Map: 映射,Reduce: 归纳)。
大规模并行处理(MPP: Massively Parallel Processing) –
同时使用多个处理器(或多台计算机)处理同一个计算任务。
元数据(Metadata) – 被称为描述数据的数据,即描述数据数据属性(数据是什么)的信息。
MongoDB – 一种开源的非关系型数据库(NoSQL database)
多维数据库(Multi-Dimensional Databases) – 用于优化数据联机分析处理(OLAP)程序,优化数据仓库的一种数据库。
多值数据库(MultiValue Databases) – 是一种非关系型数据库(NoSQL),
一种特殊的多维数据库:能处理3个维度的数据。主要针对非常长的字符串,能够完美地处理HTML和XML中的字串。
N
自然语言处理(Natural Language Processing) –
是计算机科学的一个分支领域,它研究如何实现计算机与人类语言之间的交互。
网络分析(Network analysis) – 分析网络或图论中节点间的关系,即分析网络中节点间的连接和强度关系。
NewSQL – 一个优雅的、定义良好的数据库系统,比SQL更易学习和使用,比NoSQL更晚提出的新型数据库
NoSQL –
顾名思义,就是“不使用SQL”的数据库。这类数据库泛指传统关系型数据库以外的其他类型的数据库。这类数据库有更强的一致性,能处理超大规模和高并发的数据。
O
对象数据库(Object Databases) –
(也称为面象对象数据库)以对象的形式存储数据,用于面向对象编程。它不同于关系型数据库和图形数据库,大部分对象数据库都提供一种查询语言,允许使用声明式编程(declarative
programming)访问对象
基于对象图像分析(Object-based Image Analysis) –
数字图像分析方法是对每一个像素的数据进行分析,而基于对象的图像分析方法则只分析相关像素的数据,这些相关像素被称为对象或图像对象。
*** 作型数据库(Operational Databases) –
这类数据库可以完成一个组织机构的常规 *** 作,对商业运营非常重要,一般使用在线事务处理,允许用户访问 、收集、检索公司内部的具体信息。
优化分析(Optimization analysis) –
在产品设计周期依靠算法来实现的优化过程,在这一过程中,公司可以设计各种各样的产品并测试这些产品是否满足预设值。
本体论(Ontology) – 表示知识本体,用于定义一个领域中的概念集及概念之间的关系的一种哲学思想。(译者注:
数据被提高到哲学的高度,被赋予了世界本体的意义,成为一个独立的客观数据世界)
异常值检测(Outlier detection) –
异常值是指严重偏离一个数据集或一个数据组合总平均值的对象,该对象与数据集中的其他它相去甚远,因此,异常值的出现意味着系统发生问题,需要对此另加分析。
P
模式识别(Pattern Recognition) – 通过算法来识别数据中的模式,并对同一数据源中的新数据作出预测
P字节(PB: Petabytes) – 约等于1000 TB(terabytes), 约等于1百万 GB
(gigabytes)。欧洲核子研究中心(CERN)大型强子对撞机每秒产生的粒子个数就约为1 PB
平台即服务(PaaS: Platform-as-a-Service) – 为云计算解决方案提供所有必需的基础平台的一种服务
预测分析(Predictive analysis) –
大数据分析方法中最有价值的一种分析方法,这种方法有助于预测个人未来(近期)的行为,例如某人很可能会买某些商品,可能会访问某些网站,做某些事情或者产生某种行为。通过使用各种不同的数据集,例如历史数据,事务数据,社交数据,或者客户的个人信息数据,来识别风险和机遇
隐私(Privacy) – 把具有可识别出个人信息的数据与其他数据分离开,以确保用户隐私。
公共数据(Public data) – 由公共基金创建的公共信息或公共数据集。
Q
数字化自我(Quantified Self) – 使用应用程序跟踪用户一天的一举一动,从而更好地理解其相关的行为
查询(Query) – 查找某个问题答案的相关信息
R
再识别(Re-identification) – 将多个数据集合并在一起,从匿名化的数据中识别出个人信息
回归分析(Regression analysis) –
确定两个变量间的依赖关系。这种方法假设两个变量之间存在单向的因果关系(译者注:自变量,因变量,二者不可互换)
RFID – 射频识别; 这种识别技术使用一种无线非接触式射频电磁场传感器来传输数据
实时数据(Real-time data) – 指在几毫秒内被创建、处理、存储、分析并显示的数据
推荐引擎(Recommendation engine) – 推荐引擎算法根据用户之前的购买行为或其他购买行为向用户推荐某种产品
路径分析(Routing analysis) –
针对某种运输方法通过使用多种不同的变量分析从而找到一条最优路径,以达到降低燃料费用,提高效率的目的
S
半结构化数据(Semi-structured data) –
半结构化数据并不具有结构化数据严格的存储结构,但它可以使用标签或其他形式的标记方式以保证数据的层次结构
情感分析(Sentiment Analysis) – 通过算法分析出人们是如何看待某些话题
信号分析(Signal analysis) – 指通过度量随时间或空间变化的物理量来分析产品的性能。特别是使用传感器数据。
相似性搜索(Similarity searches) – 在数据库中查询最相似的对象,这里所说的数据对象可以是任意类型的数据
仿真分析(Simulation analysis) –
仿真是指模拟真实环境中进程或系统的 *** 作。仿真分析可以在仿真时考虑多种不同的变量,确保产品性能达到最优
智能网格(Smart grid) – 是指在能源网中使用传感器实时监控其运行状态,有助于提高效率
软件即服务(SaaS: Software-as-a-Service) – 基于Web的通过浏览器使用的一种应用软件
空间分析(Spatial analysis) – 空间分析法分析地理信息或拓扑信息这类空间数据,从中得出分布在地理空间中的数据的模式和规律
SQL – 在关系型数据库中,用于检索数据的一种编程语言
结构化数据(Structured data)
-可以组织成行列结构,可识别的数据。这类数据通常是一条记录,或者一个文件,或者是被正确标记过的数据中的某一个字段,并且可以被精确地定位到。
T
T字节(TB: Terabytes) – 约等于1000 GB(gigabytes)。1 TB容量可以存储约300小时的高清视频。
时序分析(Time series analysis) –
分析在重复测量时间里获得的定义良好的数据。分析的数据必须是良好定义的,并且要取自相同时间间隔的连续时间点。
拓扑数据分析(Topological Data Analysis) –
拓扑数据分析主要关注三点:复合数据模型、集群的识别、以及数据的统计学意义。
交易数据(Transactional data) – 随时间变化的动态数据
透明性(Transparency) – 消费者想要知道他们的数据有什么作用、被作何处理,而组织机构则把这些信息都透明化了。
U
非结构化数据(Un-structured data) – 非结构化数据一般被认为是大量纯文本数据,其中还可能包含日期,数字和实例。
V
价值(Value) – (译者注:大数据4V特点之一)
所有可用的数据,能为组织机构、社会、消费者创造出巨大的价值。这意味着各大企业及整个产业都将从大数据中获益。
可变性(Variability) – 也就是说,数据的含义总是在(快速)变化的。例如,一个词在相同的推文中可以有完全不同的意思。
多样(Variety) – (译者注:大数据4V特点之一)
数据总是以各种不同的形式呈现,如结构化数据,半结构化数据,非结构化数据,甚至还有复杂结构化数据
高速(Velocity) – (译者注:大数据4V特点之一) 在大数据时代,数据的创建、存储、分析、虚拟化都要求被高速处理。
真实性(Veracity) – 组织机构需要确保数据的真实性,才能保证数据分析的正确性。因此,真实性(Veracity)是指数据的正确性。
可视化(Visualization) –
只有正确的可视化,原始数据才可被投入使用。这里的“可视化”并非普通的图型或饼图,可视化指是的复杂的图表,图表中包含大量的数据信息,但可以被很容易地理解和阅读。
大量(Volume) – (译者注:大数据4V特点之一) 指数据量,范围从Megabytes至Brontobytes
W
天气数据(Weather data) – 是一种重要的开放公共数据来源,如果与其他数据来源合成在一起,可以为相关组织机构提供深入分析的依据
X
XML数据库(XML Databases) –
XML数据库是一种以XML格式存储数据的数据库。XML数据库通常与面向文档型数据库相关联,开发人员可以对XML数据库的数据进行查询,导出以及按指定的格式序列化
Y
Y字节 (Yottabytes) – 约等于1000 ZB (Zettabytes),
约等于250万亿张DVD的数据容量。现今,整个数字化宇宙的数据量为1 YB, 并且将每18年翻一番。
Z
Z字节 (ZB: Zettabytes) – 约等于1000 EB (Exabytes), 约等于1百万
TB。据预测,到2016年全球范围内每天网络上通过的信息大约能达到1 ZB。
附:存储容量单位换算表:
1 Bit(比特) = Binary Digit
8 Bits = 1 Byte(字节)
1,000 Bytes = 1 Kilobyte
1,000 Kilobytes = 1 Megabyte
1,000 Megabytes = 1 Gigabyte
1,000 Gigabytes = 1 Terabyte
1,000 Terabytes = 1 Petabyte
1,000 Petabytes = 1 Exabyte
1,000 Exabytes = 1 Zettabyte
1,000 Zettabytes = 1 Yottabyte
1,000 Yottabytes = 1 Brontobyte
1,000 Brontobytes = 1 Geopbyte
物联网技术,是把电子、通信、计算机三大领域的技术融合起来,在互联网的基础上实现物物相连。
从技术层次来看,物联网有四个层次:感知识别层、网络构建层、服务管理层、综合应用层。
感知识别层,主要是感知信息,比如这个房间的温湿度,窗帘是否打开,空调是否开启等。温湿度传感器、红外检测、摄像头、麦克风等等都可以算在这一层次。
网络构建层,传感器读取到信息后,就可以通过网络把数据发送到后台,构建网络的技术就是属于网络层。比如GPRS、WiFi、蓝牙等。
服务管理层,处理信息的一个层次,可以理解为云端或后台服务器。网络层把数据传输到后台服务器,服务器根据需要对数据进行存储、计算、分析等等。
综合应用层,有些文献把物联网分为三个层次,其实是把应用层和服务层合并到一起了。再分细一点的话,是可以分出一个应用层或服务层出来的。这里的应用层,是指服务器处理好数据后,把数据展现给用户看的一个层次(网页、APP),或者说是一个通知用户的层次(邮件、短信等),可以理解为前端。
物联网的安全和互联网的安全问题一样,永远都会是一个被广泛关注的话题。由于物联网连接和处理的对象主要是机器或物以及相关的数据,其“所有权”特性导致物联网信息安全要求比以处理“文本”为主的互联网要高,对“隐私权”(Privacy)保护的要求也更高(如ITU物联网报告中指出的),此外还有可信度(Trust)问题,包括“防伪”和DoS(Denial of Services)(即用伪造的末端冒充替换(eavesdropping等手段)侵入系统,造成真正的末端无法使用等),由此有很多人呼吁要特别关注物联网的安全问题。
物联网系统的安全和一般IT系统的安全基本一样,主要有8个尺度: 读取控制,隐私保护,用户认证,不可抵赖性,数据保密性,通讯层安全,数据完整性,随时可用性。 前4项主要处在物联网DCM三层架构的应用层,后4项主要位于传输层和感知层。其中“隐私权”和“可信度”(数据完整性和保密性)问题在物联网体系中尤其受关注。如果我们从物联网系统体系架构的各个层面仔细分析,我们会发现现有的安全体系基本上可以满足物联网应用的需求,尤其在其初级和中级发展阶段。
物联网应用的特有(比一般IT系统更易受侵扰)的安全问题有如下几种:
1 Skimming:在末端设备或RFID持卡人不知情的情况下,信息被读取
2 Eavesdropping: 在一个通讯通道的中间,信息被中途截取
3 Spoofing:伪造复制设备数据,冒名输入到系统中
4 Cloning: 克隆末端设备,冒名顶替
5 Killing:损坏或盗走末端设备
6 Jamming: 伪造数据造成设备阻塞不可用
7 Shielding: 用机械手段屏蔽电信号让末端无法连接
主要针对上述问题,物联网发展的中、高级阶段面临如下五大特有(在一般IT安全问题之上)的信息安全挑战:
1 4大类(有线长、短距离和无线长、短距离)网路相互连接组成的异构(heterogeneous)、多级(multi-hop)、分布式网络导致统一的安全体系难以实现“桥接”和过度
2 设备大小不一,存储和处理能力的不一致导致安全信息(如PKI Credentials等)的传递和处理难以统一
3 设备可能无人值守,丢失,处于运动状态,连接可能时断时续,可信度差,种种这些因素增加了信息安全系统设计和实施的复杂度
4 在保证一个智能物件要被数量庞大,甚至未知的其他设备识别和接受的同时,又要同时保证其信息传递的安全性和隐私权
5 多租户单一Instance服务器SaaS模式对安全框架的设计提出了更高的要求
对于上述问题的研究和产品开发,国内外都还处于起步阶段,在WSN和RFID领域有一些针对性的研发工作,统一标准的物联网安全体系的问题还没提上议事日程,比物联网统一数据标准的问题更滞后。这两个标准密切相关,甚至合并到一起统筹考虑,其重要性不言而喻。
物联网信息安全应对方式:
首先是调查。企业IT首先要现场调查,要理解当前物联网有哪些网络连接,如何连接,为什么连接,等等。
其次是评估。IT要判定这些物联网设备会带来哪些威胁,如果这些物联网设备遭受攻击,物联网在遭到破坏时,会发生什么,有哪些损失。
最后是增加物联网网络安全。企业要依靠能够理解物联网的设备、协议、环境的工具,这些物联网工具最好还要能够确认和阻止攻击,并且能够帮助物联网企业选择加密和访问控制(能够对攻击者隐藏设备和通信)的解决方案。
从用户角度而言
互联网和物联网真的没有太大的区别,最大的区别就是物联网提供的内容和服务与互联网不同。比如:刷微博、刷抖音、聊微信等,这些都是来自于互联网提供给用户的内容。如果是物联网使用者,只需要知道物联网有哪些信息(比如家里的灯有没有关掉,空调有没有关掉等),以及我能做什么(比如把灯关掉,关闭空调等),这是物联网提供给用户的内容和服务。
从技术角度而言
互联网虽然经过几十年的发展,但很少有人说它是一种技术,只是偶尔听说某项技术是一种互联网技术。通常所说的Web开发技术、网络游戏技术、搜索引擎技术、移动开发技术、视频直播技术等都属于互联网技术。然而物联网技术,是将电子、计算机、通信三大领域的技术融合在一起,在互联网基础之上实现物物互联。从物联网技术层来讲,物联网其实有四个层级:1感知识别层:主要是感知信息,比如房间的温湿度,灯是否打开,空调是否开启等,温湿度传感器、红外检测、摄像头、麦克风等都属于这个层级。2网络构建层:传感器读取到信息后,就会通过网络把数据传输到后台,构建网络的技术就属于技术层。比如:GPRS、蓝牙、WIFI等。3服务管理层:处理信息层级可以理解为云端或后台服务器。网络层把数据传输给后台服务器,服务器根据需要对数据进行存储、计算、分析等。4综合应用层:文献将物联网分为三个层面,其实是将应用层和服务层合并在一起了。我们这里的应用层,指的是服务器将处理好的数据展现给用户看,比如:网页、APP等,或者通知用户,比如:邮件、短信等,可以理解为前端。
其实,与其说物联网是一种技术,不如说是建立在技术基础之上的一个时代。总的来讲,做互联网金融的是互联网行业+金融行业,做网游的是互联网+文娱,做电商的是互联网+传统销售行业,做互联网教育的是互联网+传统教育行业,那么做物联网的就是互联网+电子/电力设备。
从应用角度而言
简单来说互联网偏虚拟,但是物联网则是应用在实际物体之上的,这就是二者之间的根本性差异。正是这一差异使二者之间存在了更多的不同,例如成本方面,互联网的成本虽然很高,但是因为使用者的基数非常庞大,就将成本变得小了很多,而物联网应用的基础虽然是互联网,但目前适用范围并不广泛,而且在应用的过程中还要涉及到传感器等设备,所以在费用的方面要更加昂贵。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)