工业智能网关,物联网网关有什么区别?

工业智能网关,物联网网关有什么区别?,第1张

工业物联网网关的应用范围广,无需布线,减少运维成本,安装便捷,即插即用,适用于机房、机站动力、环境监控系统,低压配电监控系统,电能数据监控系统,工厂机器设备、生产线运行状态监控系统,生产信息采集系统等无线监测与预警。
智能网关适用于水、气、汽管网监测;EMS(能源管理系统)信号采集、传输;市政供、排水管网、管沟监测;地下管廊环境监测。生产制造、加工企业生产过程信号采集、数据传输; MES(制造执行系统)信号采集、数据传输;危化场所环境监测。大气环境监测信号采集、数据传输;农业大棚环境监测信号采集、数据传输;养殖环境监测信号采集、数据传输;医药、食品仓储环境监测信号采集、数据传输。

工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,将传统工业提升到智能工业的新阶段。物联网在工业领域的主要应用环保监测及能源管理、工业安全生产管理、制造业供应链管理、生产过程工艺优化、中国计算机报制图等等方面。物联网在工业应用领域的应用,构成了“工业物联网”,它是广域的物联网的具体化的实例,也是最容易被世人接受的物联网。工业物联网的核心理念是交叉学科的组合,涉及到信息安全、网络通信、自动化,是跨学科的,其特征为:嵌入式、互通和实时性、经济性和便利性。
工业用传感网络层:即以二维码、RFID、传感器为主,实现对“物”或环境状态的识别以及感知信号的摄入;
传输网络层:即通过现有的互联网、广电网、通信网或者下一代互联网(1Pv6),实现数据的传输和计算,尤其是现在流行的概念:云计算:
应用网络层:即输入输出控制终端,包括电脑、手机等终端等等。
从整体上来看,物联网还处于起步阶段,而工业物联网的真正达到实用化、大规模应用,必须解决如下关键技术问题:
工业用传感器:工业用传感器是一种检测装置,能够测量或感知特定物体的状态和变化,并转化为可传输、可处理、可存储的电子信号或其他形式信息。工业用传感器是实现工业自动检测和自动控制的首要环节。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。可以说,没有众多质优价廉的工业传感器,就没有现代化工业生产体系,更谈不上工业物联网。
工业无线网络技术:工业无线网络是一种由大量随机分布的、具有实时感知和自组织能力的传感器节点组成的网状(Mesh)网络,综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,具有低耗自组、泛在协同、异构互连的特点。工业无线网络技术是继现场总线之后工业控制系统领域的又一热点技术,是降低工业测控系统成本、提高工业测控系统应用范围的革命性技术,也是未来几年工业自动化产品新的增长点,已经引起许多国家学术界和工业界的高度莺视。
工业过程建模:没有模型就不可能实施先进有效的控制,传统的集中式、封闭式的仿真系统结构已不能满足现代工业发展的需要。工业过程建模是系统设计、分析、仿真和先进控制必不可少的基础。

6月29日,由南京市人民政府与未来论坛共同主办,中国国际贸易促进委员会南京市分会、南京经济技术开发区管理委员会、南京市国际商会承办的 “2019未来论坛·南京峰会”正式 开幕,本次峰会的主题为 “同行・共创”

在开幕式上,南京市人民政府副市长胡洪,红杉资本中国基金合伙人、未来论坛理事周逵作为主办方代表分别对所有参会嘉宾表达了欢迎与感谢。南京经济技术开发区管委会副主任沈吟龙对人工智能产业新地标“中国(南京)智谷”的打造作出重点介绍。

在随后的大会主旨演讲环节上,浙江大学求是特聘教授、浙江大学医学院附属第一医院双聘教授、浙江大学应用数学研究所所长、浙江大学理学部图像处理研发中心主任、大数据算法与分析技术国家工程实验室杭州创新中心主任 孔德兴 ,元禾华创投委会主席、未来论坛理事 陈大同 ,英国帝国理工学院教授、中国人工智能产业创新联盟专业委员会主任委员及鲲云 科技 联合创始人及首席科学家、英国计算机学会(BCS)会士、英国皇家工程院院士、美国电子电气工程师协会(IEEE)会士 陆永青 ,地平线创始人兼CEO、未来论坛青年理事 余凯 ,为与会者带来了海内外最前沿的科研信息及成果转化经验。

在上午的论坛上,行业优秀的企业家、科学家与投资人围绕 工业物联网 中国芯片 两大热点 科技 领域主题进行了演讲和创新对话。

智能制造是振兴实体经济、加快工业转型升级的重要突破口。我国近年来相继推出一系列智能制造的战略规划,通过工业物联网实现数字化、网络化,能够提升企业的生产效率和产品附加值,缓解生产成本。

上海全应 科技 有限公司董事长兼CEO夏建涛 在“工业互联网技术及其在热电生产智能化中的应用”的主题演讲里带来了在工业互联网时代,关于热电产业化的观点。他认为我国工业主要有两大问题:

上海全应 科技 有限公司董事长兼CEO夏建涛

工业互联网平台出现能够解决上述问题,它对离散制造业来讲重点在于智能化的管理,对流程制造业重点在于工艺的控制。其在工业企业运用中主要有三个场景, 第一是在生产中运用,第二是对企业的数据进行管理和决策优化,第三是实现全产业链的资源优化配置与协同 。夏建涛以热能生产行业为例,分享了工业互联网在产业里如何使用及使用的效果。同时他还提到“海量数据+智能算法+超级算力”会产生超越人智力的智能化系统,将深刻改变人类 社会 。

会后,亿欧新制造频道与夏建涛进行了交流,他表示目前的工业互联网最终是要落实到具体的应用场景,企业采购任何一个设备或是系统,他需要计算投入产出比,需要能够切实地解决现有的问题,“一个工业互联网平台,或者一种技术能否说服客户,取决于你是否能为客户提供切实可计算的价值。”

玄羽 科技 董事长李鸿峰 在主题演讲“AI赋能3C制造”分享了在3C行业的智能制造。玄羽 科技 选择3C制造作为智能制造的一个切入点,是因为看到了3C制造在今天已经面临着 三大困境

玄羽 科技 董事长李鸿峰

当一个产业面临这些困境的时候,就必须考虑通过技术创新和成本优化进行转型升级,这就催生了他们对智能化制造的需求。3C制造行业的特点一是 高度 离散 ,二是 迭代非常快 ,这样的行业优势在于:通过 科技 手段能带来效率提升的价值空间很大。劣势在于:由于其太离散,改造的过程十分困难。在这一背景下,玄羽 科技 最开始选择的路径是以头部企业为主,它的特点是产线基础比较好,理念比较强,可以带动整个行业。

他表示 智能制造 并非是自动化,而是智能化 。在今天的技术上,智能制造一定是算法和算力的结合,通过数据和算法的方式,切入到智能制造,并且带来巨大的价值。

慧联无限首席科学家胡昱 在主题演讲“让产业动能更强劲——数字化产业园区20”中主要分享了工业物联网的工作场景之一“数字化产业园区”的具体应用。

慧联无限首席科学家胡昱

“数字化产业园区”的价值在于利用LPWAN技术帮助园区内管理者提高管理水平和对园区入驻企业提升服务质量,他详细介绍了智慧园区解决方案的架构、平台的概述以及在实际案例中利用数字化运营的方法,并分别概述了解决了来自园区不同角色的痛点问题,希望最终打造一个构建结合园区的开发商、运营商,地方政府还有行业协会综合的融合平台。

工业物联网的核心是信息智能与工业智能的融合。通过采用信息技术,例如物联网、大数据、人工智能、区块链、5G等实现以数据驱动的工业应用的信息化与智能化,进而提高产业效率,创造价值。协合新能源集团执行董事兼CTO、未来论坛青创联盟成员尚笠尚笠作为对话环节的主持人与各位企业领袖、科学家针对发展工业物联网,难度究竟在哪里?即将到来的5G网络时代将怎样推进工业和制造业的数字化变革?从工业自动化向工业智能化升级,产业和企业如何把握新机遇等问题展开了讨论。

科技 创新对话——工业物联网:“智造”升级

慧联无限首席科学家胡昱 认为工业物联网在中国会不断往前走,但是在这个过程中,有一些定数会被打破,包括我们的工业。他认为工业物联网的IT和OT的融合还需从组织架构和战略两方面来进行。另外,从工业物联网技术创新角度看,他认为传感器创新非常重要。

清华大学计算机系长聘副教授、博士生导师李丹 认为,现在工业物联网从概念到落地,已经在是在缓慢增长的阶段,后面会越来越好。这是因为技术上是成熟的,产业的需求也在。另外,他认为IT和OT的结合,本身就会催生出新的技术创新的机会。

玄羽 科技 董事长李鸿峰 认为工业物联网要有一个循序渐进的客观规律。工业物联网IT和OT的融合,就是两化的融合。这种融合依托的是“彼此理解”的融合,信息化的人一定要了解工业上的东西,工业人一定了解信息化的东西,在实际的项目上进行打磨、成长,这样才能在将来真正意义上增加两化人才。他认为工业物联网创新,数据是基础,没有数据就没有依托了,数据从量变到质变,就会衍生出应用的创新。

毕马威中国管理咨询服务主管合伙人刘建刚 认为工业物联网的应用现在不仅仅是一个概念的问题。怎么把概念落为实处?一是要从需求导向;二是战略驱动;三是企业本身的能力建设;四是必须要场景切入;五是生态系统协同的能力。从工业互联网行业发展来讲,要有标准:一是工业互联网接口开放的标准;二是融合后的IT架构的标准。

上海全应 科技 有限公司董事长兼CEO夏建涛 认为工业物联网只有正向、增强性的循环,这个产业才能真正落地。工业物联网要IT、OT深度在一起,认为云+端的创新,对工业物联网技术创新非常重要。

启明创投合伙人叶冠泰 认为,促进工业互联网的发展,非常必要的一点是IT和OT的紧密结合,但更为重要的关键点是缩短打通整个行业的利益链条。

推荐阅读:

制造突围,粤港澳大湾区企业转型在路上

物联网、大数据、机器人纷纷助力,离散制造业要走的智能化之路

工业互联网的前世今生:初探工业互联网

说起智能工厂,人们总是将其与无人化工厂相联系,其实智能工厂并不一定是“黑灯工厂”,或者说,智能工厂也不应该仅仅是“黑灯工厂”。对于现在大部分存量工厂而言,如何变成智能工厂,其实就是要弄清楚对于存量工厂而言,其痛点是什么;或者说,什么方式可以帮助其智能化转型,并为其所用。在 科技 进化到一定阶段之前,存量工厂如何智能化?

那么,在探讨存量工厂智能化转型之前,我们首先要知道几个概念:物联网是什么?工业互联网又是什么?

简单来说,工业互联网由工业物联网和产业互联网组成。

工业物联网是物联网(IoT)在工业场景的应用,可以打通工业“人机物法环测”六大要素。

产业互联网使产业链上下游互联互通。

工业互联网+云计算+大数据处理+人工智能,构成针对工业的综合性技术。

对于单体工厂来说,IoT是变成智能工厂的第一步,只有迈出了这第一步,才能实现数字化、智能化。

阿尔卑斯系统集成(大连)有限公司(简称“ALSI”)为制造业提供多元化智能工厂规划方案。其中,ALSI大连IoT解决方案主要根据制造现场实际情况,完成“人机物法环测”六要素有效数据的自动采集与上传,并进行数据分析与管理。

总体来说,ALSI大连IoT解决方案有五大特点:

1适用范围广。无论是由专用设备组成的产线,还是通用设备,都可以采用。

2具有强大的兼容性。无论一条产线上有多少种不同品牌、型号的设备,都可以统一入网进行全自动数据采集。

3接口完全开放,可与各种管理软件无缝衔接。如MES、PLM、WMS,都可调用ALSI的IoT解决方案采集的数据,也可以通过ALSI直接定制智能产线控制系统,实现现场管理的智能化转型。

4传感器技术先进。ASLI大连的集团公司ALPSALPINE,是世界知名的传感器研发生产企业,品质卓越,技术领先。“稳定”、“安全”是它的特点;“精准”、“可靠”是客户对它的评价。ALSI大连在IoT解决方案中根据应用场景需求选用最适合的传感器,完成向智能工厂转型的坚不可摧“基建”工作。

5成本相对较低、实施难度小。以生产设备智能管理为例,其成本仅为PLC的1/3,加装数采设备时不用停产,而且数采设备可以随时更换,或用于其它设备或产线,自由、方便、灵活。

对于存量工厂而言,一味地追求智能工厂建设不科学,而直接转变为“黑灯工厂”更是不现实的事情,在一定的 历史 时期,我们要考虑智能工厂的目的是什么,或者说,对于存量工厂来说,什么才是“智能工厂”,那一定是落地的、切实可行、将影响降到最小的解决方案,才是其智能化的切入点。

更多智能制造解决方案详见

ALSI大连_精益生产_智能工厂_设备监控系统_阿尔卑斯系统集成(大连)有限公司

工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。

所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。

思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。

首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。

作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。

总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:

1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;

2、MCU的发展使得计算能力快速提升;

3、以调制技术为核心的通讯技术发展为联网建立的管道基础;

4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;

工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。

通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:

1、使用设备开放的协议;

2、使用设备自带的传感器;

3、添加新的传感器;

4、改变观察侧面及维度,使用全新的采集模式;

其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。

所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;

在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:

1、传感级;

2、设备级;

3、产线级;

4、车间级;

5、企业级;

也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。

总之,我们应该从以几个方案来确定工业物联网的建设原则:

1、期望获得什么结果?

2、期望用什么方式获得想要的结果?

3、需要信息基础提供什么?

4、工业物联网是否能够获得这些信息?

5、工业物联网如何获得这些信息?

6、获得这些信息的性价比如何?

7、回归分析,评估预期结果是否符合经济利益?

8、落地实施。

目前,很多公司正在积极布局智能制造和工业物联网发展战略。问题是,这些企业是会共同推进两个战略的发展还是分开推进呢?我相信他们会共同推进,但我也可以理解那些把他们看作是分开的人。
在我们讨论这个话题之前,先让我先定义一下术语,因为有很多关于这个的争论。
智能制造:在工厂和整个价值链内实现业务、物理和数字流程的智能化、实时协调和优化。基于所有可用的信息,资源和流程将实现自动化、集成化、被监控和持续评估。(根据MESA International ,MES国际联合会定义)
IIoT:在工业(如组件、产品、产品运输和设备)中使用的物理对象(“物”)中嵌入电子、软件、传感器组成的网络,这个网络能够使物理对象通过互联网协议(IP)收集数据并与控制系统、业务流程和分析交换数据。(根据维基百科“IoT”修改)
现在回到我们的核心问题:两个战略是要共同推进还是分开推进呢?很明显,目前还没有定论。下面是这些观点的一些背景:
工业互联网协会(IIC)说:"通过自动化工业设备和系统之间的通信,IIoT提高了整个工厂的效率,使其更加智能化,"我同意。我相信,IIoT是智能制造的一项有利技术,它的进步将推动智能制造的发展。同样,随着智能制造超越概念,进入公司正在执行的项目,制造商和他们的解决方案提供者将改进支持这些项目的IIoT技术。这两个很可能会被共同推进。
另外:并不是每个人都同意。在最近的MESA调查中,超过三分之一的制造商报告说他们不相信智能制造包括IIoT(参见上图)。我明白这个观点,因为智能制造有很多途径。实际上,IIoT可以在一些可能定义智能制造的正常边界之外使用。
与智能制造相比,IIoT确实发展可能会更快,因为解决整个价值链上的项目是一个超出公司内部的挑战。像通用动力公司、通用磨坊和通用汽车这样的大公司可以展示他们的力量,并帮助推动特定行业的智能制造行动,但是IIoT项目可以取得很大的进展,并在公司的内部提供许多好处。如果消费者市场上的物联网计划提高了工厂内部的期望门槛,那么实现类似的互联互通、数据访问、控制和分析能力也会有压力。
此外,生产仍将涉及人员,以及未配备IIoT的设备和产品。对于一些智能制造方案,IIoT没有也不可能是商业案例,这些情景可能关注人员和价值链流程。
推动第四次工业革命的是什么?
有些人会认为智能制造或IIoT可能导致第四次工业革命。我也有一个观点:智能制造是这场革命的基础,而IIoT不是。即使IIoT的发展比智能制造快得多,我也不认为它足以让生产企业进入下一个生产力阶段。
那么IIoT缺少了什么来推动第四次工业革命呢?首先是企业环境。智能制造不仅整合了工厂或智能连接工厂,还包括智能连接的供应链和贯穿产品生命周期的数字线程。与其他工业革命一样,技术的转变--比如IIoT--必须与新的流程和人们工作的方式协同工作,以达到我们在第四次工业革命中所追求的生产力水平的提高。
IIoT是一项基础技术,但它只做它所做的事情--在"事物"之间创建通信,以便更容易地获取数据和分析。第四次工业革命需要许多其他技术和工艺。其中一些将针对一件设备或生产过程;其他人将在工厂、企业或价值网络上工作。
真正让商界人士兴奋的是,当新技术和新方法将它们整合在一起时,就会扰乱市场,并让公司提供新的服务和与新产品所能产生的数字数据绑定的新价值。例如,基于IoT的智能产品可以向工程师和生产者提供关于产品如何在该领域执行的反馈。基于这些数据,我们能提供什么样的新见解和服务?
这就是为什么我认为,要实现第四次工业革命需要更多的时间。它将把IoT和IIoT引入智能制造策略,以创建新的方法来协调和优化整个价值链中的流程,并向客户交付新的服务级别。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12877082.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存