嵌入式物联网之SPI接口原理与配置

嵌入式物联网之SPI接口原理与配置,第1张

本实验采用W25Q64芯片

W25Q64是华邦公司推出的大容量SPI

FLASH产品,其容量为64Mb。该25Q系列的器件在灵活性和性能方面远远超过普通的串行闪存器件。W25Q64将8M字节的容量分为128个块,每个块大小为64K字节,每个块又分为16个扇区,每个扇区4K个字节。W25Q64的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节。所以,这需要给W25Q64开辟一个至少4K的缓存区,这样必须要求芯片有4K以上的SRAM才能有很好的 *** 作。

W25Q64的擦写周期多达10W次,可将数据保存达20年之久,支持27~36V的电压,支持标准的SPI,还支持双输出/四输出的SPI,最大SPI时钟可达80Mhz。

一。SPI接口原理

(一)概述
高速,全双工,同步的通信总线。

全双工:可以同时发送和接收,需要2条引脚

同步: 需要时钟引脚

片选引脚:方便一个SPI接口上可以挂多个设备。

总共四根引脚。

(二)SPI内部结构简明图
MISO: 做主机的时候输入,做从机的时候输出

MOSI:做主机的时候输出,做从机的时候输入

主机和从机都有一个移位寄存器,在同一个时钟的控制下主机的最高位移到从机的最高位,同时从机的最高位往前移一位,移到主机的最低位。在一个时钟的控制下主机和从机进行了一个位的交换,那么在8个时钟的控制下就交换了8位,最后的结果就是两个移位寄存器的数据完全交换。

在8个时钟的控制下,主机和从机的两个字节进行了交换,也就是说主机给从机发送一个字节8个位的同时,从机也给主机传回来了8个位,也就是一个字节。

(三)SPI接口框图
上面左边部分就是在时钟控制下怎么传输数据,右边是控制单元,还包括左下的波特率发生器。

(四)SPI工作原理总结
(五)SPI的特征
(六)从选择(NSS)脚管理
两个SPI通信首先有2个数据线,一个时钟线,还有一个片选线,只有把片选拉低,SPI芯片才工作,片选引脚可以是SPI规定的片选引脚,还可以通过软件的方式选择任意一个IO口作为片选引脚,这样做的好处是:比如一个SPI接口上挂多个设备,比如挂了4个设备,第二个用PA2,第三个用PA3,第四个用PA4作为片选,我们

跟第二个设备进行通信的时候,只需要把第二个片选选中,比如拉低,其他设备的片选都拉高,这样就实现了一个SPI接口可以连接个SPI设备,战舰开发板上就是通过这种方法来实现的。

(七)时钟信号的相位和极性
时钟信号的相位和极性是通过CR寄存器的 CPOL 和 CPHA两个位确定的。

CPOL:时钟极性,设置在没有数据传输时时钟的空闲状态电平。CPOL置0,SCK引脚在空闲时为低电平,CPOL置1,SCK引脚在空闲时保持高电平。

CPHA:时钟相位 设置时钟信号在第几个边沿数据被采集

CPHA=1时:在时钟信号的第二个边沿
CPOL=1,CPHA=1,

CPOL=1表示时钟信号在没有数据传输时即空闲时的状态为高电平。如果CPHA=1,那么数据就在时钟信号的第二个边沿即上升沿的时候被采集。

CPOL= 0,CPHA=1, CPOL=0表示时钟信号在没有数据传输时即空闲时的状态为低电平。

如果CPHA=1,那么数据就在时钟信号的第二个边沿即下降沿的时候被采集。

CPHA=0时:在时钟信号的第一个边沿
CPOL=1,CPHA=0,

CPOL=1表示时钟信号在没有数据传输时即空闲时的状态为高电平。如果CPHA=1,那么数据就在时钟信号的第一个边沿即下降沿的时候被采集。

CPOL= 0,CPHA=0, CPOL=0表示时钟信号在没有数据传输时即空闲时的状态为低电平。

如果CPHA=1,那么数据就在时钟信号的第一个边沿即上升沿的时候被采集。

为什么要配置这两个参数

因为SPI外设的从机的时钟相位和极性都是有严格要求的。所以我们要根据选择的外设的时钟相位和极性来配置主机的相位和极性。必须要与从机匹配。

(八)数据帧的格式和状态标志
数据帧格式:根据CR1寄存器的LSBFIRST位的设置,数据可以MSB在前也可以LSB在前。

根据CR1寄存器的DEF位,每个数据帧可以是8位或16位。

(九)SPI中断
(十)SPI引脚配置 (3个SPI)
引脚的工作模式设置
引脚必须要按照这个表格配置。

二。SPI寄存器库函数配置

(一)常用寄存器
(二)SPI相关库函数
STM32的SPI接口可以配置为支持SPI协议或者支持I2S音频协议。默认是SPI模式,可以通过软件切换到I2S方式。

常用的函数:

1 void SPI_Init(SPI_TypeDef SPIx, SPI_InitTypeDef

SPI_InitStruct);//SPI的初始化

2 void SPI_Cmd(SPI_TypeDef SPIx, FunctionalState NewState); //SPI使能

3 void SPI_I2S_ITConfig(SPI_TypeDef SPIx, uint8_t SPI_I2S_IT,

FunctionalState NewState); //开启中断

4 void SPI_I2S_DMACmd(SPI_TypeDef SPIx, uint16_t SPI_I2S_DMAReq,

FunctionalState NewState);//通 过DMA传输数据

5 void SPI_I2S_SendData(SPI_TypeDef SPIx, uint16_t Data); //发送数据

6 uint16_t SPI_I2S_ReceiveData(SPI_TypeDef SPIx); //接收数据

7 void SPI_DataSizeConfig(SPI_TypeDef SPIx, uint16_t SPI_DataSize);

//设置数据是8位还是16位

8 其他几个状态函数

void SPI_Init(SPI_TypeDef SPIx, SPI_InitTypeDef

SPI_InitStruct);//SPI的初始化
结构体成员变量比较多,这里我们挑取几个重要的成员变量讲解一下:

第一个参数 SPI_Direction 是用来设置 SPI 的通信方式,可以选择为半双工,全双工,以及串行发和串行收方式,这里我们选择全双工模式

SPI_Direction_2Lines_FullDuplex。

第二个参数 SPI_Mode 用来设置 SPI 的主从模式,这里我们设置为主机模式 SPI_Mode_Master,当然有需要你也可以选择为从机模式

SPI_Mode_Slave。

第三个参数 SPI_DataSiz 为 8 位还是 16 位帧格式选择项,这里我们是 8 位传输,选择SPI_DataSize_8b。

第四个参数 SPI_CPOL 用来设置时钟极性,我们设置串行同步时钟的空闲状态为高电平所以我们选择 SPI_CPOL_High。

第五个参数 SPI_CPHA

用来设置时钟相位,也就是选择在串行同步时钟的第几个跳变沿(上升或下降)数据被采样,可以为第一个或者第二个条边沿采集,这里我们选择第二个跳变沿,所以选择

SPI_CPHA_2Edge

第六个参数 SPI_NSS 设置 NSS 信号由硬件(NSS 管脚)还是软件控制,这里我们通过软件控

制 NSS 关键,而不是硬件自动控制,所以选择 SPI_NSS_Soft。

第七个参数 SPI_BaudRatePrescaler 很关键,就是设置 SPI 波特率预分频值也就是决定 SPI 的时

钟的参数 , 从不分频道 256 分频 8 个可选值,初始化的时候我们选择 256 分频值

SPI_BaudRatePrescaler_256, 传输速度为 36M/256=140625KHz。

第八个参数 SPI_FirstBit 设置数据传输顺序是 MSB 位在前还是 LSB 位在前, ,这里我们选择

SPI_FirstBit_MSB 高位在前。

第九个参数 SPI_CRCPolynomial 是用来设置 CRC 校验多项式,提高通信可靠性,大于 1 即可。

设置好上面 9 个参数,我们就可以初始化 SPI 外设了。

初始化的范例格式为:

SPI_InitTypeDef SPI_InitStructure;

SPI_InitStructureSPI_Direction = SPI_Direction_2Lines_FullDuplex;

//双线双向全双工

SPI_InitStructureSPI_Mode = SPI_Mode_Master; //主 SPI

SPI_InitStructureSPI_DataSize = SPI_DataSize_8b; // SPI 发送接收 8 位帧结构

SPI_InitStructureSPI_CPOL = SPI_CPOL_High;//串行同步时钟的空闲状态为高电平

371

SPI_InitStructureSPI_CPHA = SPI_CPHA_2Edge;//第二个跳变沿数据被采样

SPI_InitStructureSPI_NSS = SPI_NSS_Soft; //NSS 信号由软件控制

SPI_InitStructureSPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; //预分频

256

SPI_InitStructureSPI_FirstBit = SPI_FirstBit_MSB; //数据传输从 MSB 位开始

SPI_InitStructureSPI_CRCPolynomial = 7; //CRC 值计算的多项式

SPI_Init(SPI2, &SPI_InitStructure); //根据指定的参数初始化外设 SPIx 寄存器

(三)程序配置步骤
三。W25Qxx配置讲解

(一)电路图
片选用的PB12

W25Q64 是华邦公司推出的大容量SPI FLASH 产品,W25Q64 的容量为 64Mb,该系列还有 W25Q80/16/32

等。ALIENTEK 所选择的 W25Q64 容量为 64Mb,也就是 8M 字节。(1M=1024K)

W25Q64 将 8M 的容量分为 128 个块(Block),每个块大小为 64K 字节,每个块又分为 16个扇区(Sector),每个扇区 4K

个字节。W25Q64 的最少擦除单位为一个扇区,也就是每次必须擦除 4K 个字节。这样我们需要给 W25Q64 开辟一个至少 4K 的缓存区,这样对 SRAM

要求比较高,要求芯片必须有 4K 以上 SRAM 才能很好的 *** 作。

W25Q64 的擦写周期多达 10W 次,具有 20 年的数据保存期限,支持电压为 27~36V,W25Q64 支持标准的

SPI,还支持双输出/四输出的 SPI,最大 SPI 时钟可以到 80Mhz(双输出时相当于 160Mhz,四输出时相当于 320M),更多的 W25Q64

的介绍,请参考 W25Q64 的DATASHEET。

在往一个地址写数据之前,要先把这个扇区的数据全部读出来保存在缓存里,然后再把这个扇区擦除,然后在缓存中修改要写的数据,然后再把整个缓存中的数据再重新写入刚才擦除的扇区中。

便于学习和参考再给大家分享些spi 的资料

stm32之SPI通信

>工业物联网越来越火 看看通用电气在做啥

所谓智慧制造、智慧机器,在硬体技术上如感测器等领域,其实都已经发展相当完备,目前最核心的关键,正如通用所关注的,是“软”的整合与服务方面,以 ServiceMax 来说,其物联网云端平台可接收物联网上各装置内建感测器的资讯,让使用单位或是维修公司了解哪个零件何时将要故障,据此排定检修更换时间,可大量提升维修效率,节省时间与成本,并且提高装置的可靠率。

现在物联网应用越来越普遍,在生活中很多见,电子标签应该也属于物联网技术应用吧。

RFID射频识别是一种非接触式的自动识别技术,它通过射频讯号自动识别目标物件并获取相关资料,识别工作无须人工干预,可工作于各种恶劣环境。
目前RFID技术在广州服装行业的应用越来越收到服装企业主的重视,通过RFID技术提供供应链管理的透明度,提高库存转转率,减少缺货损失,提升门店的消费体验 通过RFID技术基本上为服装行业带来四大类的利益:
快--物流效率快,货品交接点数快。
准--在供应链的各个环节对服装的流通资料采集准确。
防--通过嵌入理德RFID晶片到服装内部,实现防窜货和防伪功效。
服务--通过理德服装RFID智慧商店,提高消费者体验,通过互动,更多商品的展示,快速响应消费者需求来提高服务水平。

头不动 眼不眨 看看小猫在做啥 左看看 右看看

歌名:《小花猫》小花猫喵喵喵,饿著肚子咕咕叫,左瞧瞧右看看,地上小鱼快吃掉。小花猫,跳跳跳,磨磨爪子喵喵叫。左扑扑右跳跳,发现老鼠别放掉。

谁来守卫工业物联网安全

根据物联网自身的特点,物联网除了面对行动通讯网路的传统网路安全问题之外,还存在着一些与已有行动网路安全不同的特殊安全问题。这是由于物联网是由大量的机器构成,缺少人对装置的有效监控,并且数量庞大,装置丛集等相关特点造成的,这些特殊的安全问题主要有以下几个方面。
物联网机器/感知节点的本地安全问题。由于物联网的应用可以取代人来完成一些复杂、危险和机械的工作。所以物联网机器/感知节点多数部署在无人监控的场景中。那么攻击者就可以轻易地接触到这些装置,从而对他们造成破坏,甚至通过本地 *** 作更换机器的软硬体。
感知网路的传输与资讯保安问题。感知节点通常情况下功能简单(如自动温度计)、携带能量少(使用电池),使得它们无法拥有复杂的安全保护能力,而感知网路多种多样,从温度测量到水文监控,从道路导航到自动控制,它们的资料传输和讯息也没有特定的标准,所以没法提供统一的安全保护体系。
核心网路的传输与资讯保安问题。核心网路具有相对完整的安全保护能力,但是由于物联网中节点数量庞大,且以丛集方式存在,因此会导致在资料传播时,由于大量机器的资料传送使网路拥塞,产生拒绝服务攻击。此外,现有通讯网路的安全架构都是从人通讯的角度设计的,并不适用于机器的通讯。使用现有安全机制会割裂物联网机器间的逻辑关系。

看看物联网(IoT)如何让电网更加智慧

智慧电网与能源参考设计
用于塑壳断路器 (MCCB) 的低功耗、低噪声模拟前端设计
高压 12V-400VDC 电流感测参考设计
用于 G3-PLC 电力线通讯的模组上系统(CENELEC 频段)
我这周在浏览物联网 (IoT) 时,想仔细看看IoT将如何使电网更加智慧(反之亦然),在整个基础设施和住宅内提供更多的资讯,实现更佳的互联互通。通过IoT,使用者、制造商和公共事业服务供应方将揭示一种全新的方法来管理装置,并最终节省资源和开销。让我们看一看世界上的智慧电表将智慧电网与你的住宅连线在一起的实现方式。
在全球都在关注能源管理和节能的当下,IoT将把智慧电网的连线优势扩充套件到公共事业供应方所完成的配电、自动化和监视之外。住宅和楼宇内,管理系统的使用将帮助使用者监视他们自己的用量并调整使用习惯。这些系统将最终通过在非高峰用电时间执行来自动调节,并且连线至感测器来监视使用者数、光照条件以及更多引数。但是,这一切都源自一个更加智慧和互连程度更高的电网。
智慧电网使IoT成为现实的第一个关键步骤是大量采用智慧仪表。目前已经连线了数百万个仪表,并且互连电网的势头仍在增长。然而,要发挥其最大潜能,智慧电网的第一步是从机械电表向智慧电子仪表的转变,其目的是建立仪表和公共事业供应方的双向通讯。
美国的智慧电子仪表的采用率接近50%,目前现场已经安装了数百万个电表,与电网互连并定期通讯。从本质上说,电表正在将它们的功能从电能计量装置扩充套件成为双向通讯系统。
现代的电子仪表必须符合特定的标准才能在智慧电网和IoT中发挥如此关键的作用。首先,仪表需要在住所和楼宇中将能耗资讯报告给公共事业单位。在美国,合适的解决方案是低功耗RF (LPRF) 通讯,使用的是Sub-1 GHz网状网路。然而,根据国别和电网属性的不同,无线解决方案也许不是最佳选择,比如说在西班牙或法国等使用有线窄带正交频分复用 (OFDM) 电力线通讯 (PLC) 的国家。没有放之四海而皆准的互联互通解决方案。使IoT成为现实需要更大量的产品组合,能够支援从有线到无线,而有时需要将二者结合起来。
第二,仪表需要通过住宅内显示器或闸道器将有用的能耗资讯传送到屋内。这些资讯使得使用者相应地调整用电习惯并降低这方面的开销。在美国,ZigBee标准与智慧能源应用系统组合使用。其他像英国或日本等国,正在评估Sub-1 GHz RF或PLC解决方案,以实现更大的覆盖范围,或者混合RF和PLC的组合实现。所以,本质上说,电表正在成为智慧感测器,用于在住宅和楼宇内外进行双向通讯的IoT,以网状网路的方式互连,同时将基本能量资料报告给公共事业单位。
此外,智慧仪表需要支援诸如动态定价、需求响应、远端连线和断开、网路安全、无线下载和安装后升级等高阶功能,这样的话,公共事业供应方也就没有必要为每个仪表都派遣一名技师了。
如你所见,智慧电网在支援IoT方面发挥了关键作用—但这只是开始。将楼宇和住宅中的装置连线在一起是发挥智慧电网全部优势的下一件要做的事,而很多创新型解决方案和便利化应用已经向用户提供。专用家庭能源闸道器、智慧应用中心或能量管理系统将使使用者更快地感受到互连电网和IoT所带来的益处。
如需了解更多资讯,立即检视智慧电源与电网解决方案
智慧电网与能源参考设计
用于塑壳断路器 (MCCB) 的低功耗、低噪声模拟前端设计
高压 12V-400VDC 电流感测参考设计
用于 G3-PLC 电力线通讯的模组上系统(CENELEC 频段)
以上由物联传媒转载,如有侵权联络删除

通用电气6q管理

通用电气(GE)的电子商务战略
1GE概述
通用电气公司(GE)是一家多元化经营的全球性企业集团,它的历史可以追溯到1878年托马斯 A爱迪生建立的爱迪生电气照明公司。1892年,爱迪生通用电气公司和汤姆森-休斯顿电气公司合并,创立通用电气公司。一百多年来,通用电气公司秉承以科技带来美好生活的理念,始终保持科技创新,保持全球领先的技术优势。目前,通用电气公司拥有24414项专利,累计居全球第一。
GE集技术、制造和服务业为一体,致力于在其所经营的每个行业取得全球领先地位。GE在2004年1月,将原有下属的13个工业集团重组为目前的11个业务集团:能源集团、高新材料集团、消费者金融服务集团、商务融资集团、医疗健康集团、消费与工业产品集团、基础设施集团、全国广播公司、运输集团、装置服务集团、保险集团。若单独排名,至少有9个业务集团可名列全球500家最大公司。GE在世界各地160个国家开展业务,其中包括在26个国家运作的270家生产厂,全球拥有员工30多万人。GE的境外收入逐年上升,1999年该公司在美国以外地区取得的收入占其1070多亿美元总收入的41%,达439亿美元。2003年销售收入达到了1342亿美元。GE在中国有悠久的历史,目前它的11个业务集团都己在中国开展业务,建立了20家办事处和近30家合资或独资企业,总投资超过15亿美元。GE仍是世界上仅有的七家3-A级工业公司之一。连续六年被《金融时报》获得“全球最受尊敬的公司”称号。
2GE的电子商务战略
从一个传统型的产业公司转变为新的电子商务企业已经被GE列为公司发展的重点。1999年,GE在其原先的六个西格玛质量、全球化和服务三个战略的基础上,又将电子商务正式列为公司业务增长的又一个发展战略。电子商务实施的头一年就为公司获得了10亿美元的网上营业收入。这使得GE这家百年辉煌的公司在新世纪保持持续高速发展的动力。这一变化在整个西方企业界都产生了巨大的影响。GE希望通过推广电子商务,为这家一个世纪以来一直处于领导地位的公司找到并建立未来的业务发展模式。在2000年,GE公司的电子商务战略方向有三方面的内容:保证每一家GE企业集团有一个客户网路中心,以提供最高质量的线上服务、销售和支援;将内部采购和供应商资源转移到网上,以充分发挥高效率和低成本的优势;不断开发新技术和服务,以增加线上销售。
实际上,一向以科技领先的GE并不是电子商务的后来者,其下属的资讯服务集团在电子资料交换(EDI)、网际网路基础上的虚拟贸易环境等领域,一直处于全球领先的地位。近年来,GE的金融、塑料、医疗器械、飞机发动机、动力系统等部门都根据自己的业务,通过网际网路进行了网上销售、客户服务、资讯释出、远端装置监控与维护以及员工招聘、内部管理等活动,其中GE集团的一个销售网站Polymerland,在2000年一周的交易量就达到500万美元,2001年实现了15至20亿美元。
GE之所以将电子商务战略提高到决定企业发展的重要高度,其原因是GE的高层充分预见到网际网路络的发展将给所有经济实体带来的影响。网际网路的发展使企业与客户、企业与员工、员工与员工之间等一切关系变得透明,知识就是力量成为过去。因为所有的人都可以轻易地同时获得大量的资讯,企业传统的经营方式将必然受到冲击,包括中间商解体、集合竞争、虚拟商业社群、对客户的完全渗透、动态价格、针对性产品、协同市场、伙伴服务等已经初步显现的企业经营模式的变化。
GE推崇电子商务,正是为了及时把握和参与这些变化,通过在销售方(客户)、购买方(供应商)、投资业务以及内部程式等方面的变化,继续在“更快、更好地使客户满意”方面保持领先,从而保持企业发展的活力,巩固其领先地位,这也是GE视变革为机遇的企业精神的又一个切实的体现。
GE迄今为止仍是全球最优秀的公司,它正以最大的热情推动电子商务的革命。这不仅决定了这个百年巨人未来的命运,也必将产生全球性的深远影响。
美国最著名的网际网路和资讯科技杂志《因特网周刊》,首次对美国各大公司做了主题为“因特网周刊100强”的调查,选出了在10个主要工业领域里最领先的电子商务企业,GE被评为2000年“本年度电子商务企业”。
3GE的电子采购系统
GE积极推进向电子商务企业的战略转型,取得了非常明显的效益。下面仅以GE下属的照明工程集团(注:该集团业务在2004年1月后合并入GE能源集团)采用了基于网际网路的电子采购系统后的情况为例:
GE的原材料成本在1982-1992年间增长了16%,而同期的价格却保持了不变甚至开始下降。为了抵消由于成本上涨带来的不利因素,GE全力以赴改进其采购方式,经过对采购过程的分析发现采购方式缺乏效率,中间交易过程过多。因为订单、收据和发货单上的资料不符,1/4以上的发货单需要重新填写。
GE照明工程集团过去每天需对许多低价机械零件向公司采购部发出询价申请。采购部每天都要向合作伙伴传送成百上千的询价单以获得最低的原材料价格。以往的手工采购程式是:对于每一笔询价申请,采购部都要对每一份询价申请附上设计图;设计图要从公司技术资料档案中检索出来,拿到影印室影印,摺叠后与询价申请一同装入信封寄出。该过程需要7天才能够完成并且非常复杂和浪费时间。由于程式繁琐、时间紧迫,公司采购部每次通常只将招标档案寄给两三家供货商。
自1996年GE启动了第一个网上线上采购系统(TPN Post)后,采购过程变得简单快捷了。如今GE照明工程集团电子采购的做法是:通过电子邮件的方式向采购部发出电子询价申请,采购部通过网际网路向全球供货商发出招标档案。该系统可自动检索出准确的设计图纸,并自动将正确的图表和附件附在电子询价单上。在采购部开始处理该采购过程的两个小时内,全球的供货商们就能以电子邮件、传真或EDI方式收到了询价单,有7天时间进行竞标准备并将标书通过网际网路传回,GE收到标书的当天就可完成评标工作,并最终选定中标人。
照明工程集团实施线上采购系统(TPN)后,获得了一系列的好处:线上采购系统使公司中60%负责采购的人员获得了解放并被重新安排了工作。采购部从大量的纸面、影印和邮寄工作中解脱出来,每月至少能够腾出6至8天的额外时间集中研究发展战略问题。由于能够线上与范围更广的供应商联络,采购中人工成本节省了30%,原材料成本也下降了5%至20%。过去通常需要18至23天来确认供货商、准备投标请求、与供货商谈判价格并签署合同等事宜,现在只需要9至11天。交易过程自始至终通过电子方式进行 *** 作,收据与采购定单自动相一致,反映出整个过程发生的全部变动情况。世界各地的采购部门就最好的供货商的情况互相交流资讯。1997年2月,GE照明工程集团通过网际网路发现了7个新的供货商,其中一家的报价甚至比另一家的报价低20%。GE估计,仅全面转变采购方式一项每年就可以为公司节省5至7亿美元。

通用电气在上海所有的公司及其地址

GEHC江娱德通用电气医疗系统贸易发展(上海)有限公司(TD)地址:
上海市兴义路8号万都中心1101室
邮政编码:200336
电话:(8621)52574640-64000
传真:(8621)52080002
GEHC通用电气亚洲超声部地址:
上海兴义路8号万都中心1105--1108室
邮政编码: 200336
电话:(8621)52574640-64136
传真:(8621)52080582
GEHC通用电气上海外高桥物流部及仓库地址:
上海外高桥保税区冰克路777号上外四号库二楼
邮政编码:200131
电话:(8621)58692900
传真:(8621)58692911
GEHC通用电气上海国贸办事处地址:
上海市延安西路2200号 上海国际贸易中心2701室
邮政编码:200336
电话:(8621)52574530
传真:(8621)62191584
GEHC通用电气上海万都办事处地址:
上海兴义路8号万都中心24层
邮政编码: 200137
电话:(021)52574650
传真:(021)52082008 52082012
通用电气(中国)研究开发中心有限公司
地址:张江高科技园区蔡伦路1800号
电话:50504666
通用电气工业系统(上海)有限公司
地址: 冰克路777号
电话: 58692900
通用电气照明有限公司
地址: 嘉定区南翔镇真南路4727号
电话: 59127777
通用电气(中国)照明技术中心
地址: 嘉定区南翔镇大桥头西
电话: 69179474
通用电气有机矽(上海)有限公司
地址: 松江区松江镇工业区松胜路218号
电话: 57747366
GE-东芝有机矽上海有限公司
地址: 上海市外高桥保税区爱都路56号
电话: 021-50460460
通用电气药业(上海)有限公司
地址:中国上海浦东张江高科技园区牛顿路1 号
电话:+86 21 38954500
还有一些GE只列了电话号码的,就只能列电话给你了:
GE中国
(021) 6288-1088
GE中国 新闻中心
(021) 6288-1088
中国技术中心
(021) 5050-4666
GE基础设施集团
水处理
(021) 3222-4747
GE工业集团
Fanuc自动化
(021) 3222-4555
GE工业集团
(021) 2401-3333
感测与测量
(021) 3222-4555
家电
(021) 2401-3333
检测科技
(021) 3414-4620
照明
(021) 2401-3333
NBC环球
CNBC
(021) 6288-1088

物联网可以应用在什么方面让我们的生活越来越美好

在物联网时代,车载装置会及时提醒司机减速换道行驶;老人如遇意外跌倒、生病或异常状态都可以通过远端网路,传递给社群或子女;智慧化楼宇中的感测器检测到主人离开后,能自动通知控制器关闭水电气和门窗,并对住宅内的安全情况进行监控,实时向主人的手机发送异常情况报告。
你也可以去物联商业网上看下相关内容

现在通用电气总裁是谁

杰夫·伊梅尔特(Jeffrey R Immelt)是通用电气(GE)公司现任董事长兼执行长。

如何用物联网资料来构建工业智慧

得益于物联网和工业40的兴起,最近几年,不少企业已经通过物联网的手段,建立起了资料采集,监控和展示的平台。对于资料的深层次应用,例如利用最新的机器学习演算法,对资料进行智慧化提升,则是目前工业使用者进行数字化转型的必由之路。
从现在的趋势来看,人工智慧的热点领域都集中在语言、影象互动类, 或者商业应用类。对于工业领域,基于物联网获取的流式资料,如何通过人工智慧来实现效率提升?在使用这些资料的过程中,如何避免踩坑,顺利进行方案的部署?这是工业界需要解决的问题。为此,本期硬创公开课,雷锋网邀请了觉云科技CEO常伟来为大家讲解如何用物联网资料来构建工业智慧。详情可以咨询统一通讯官网网站

物联网无线通信技术不止四种啊,有很多,主要分为两类:一类是Zigbee、WiFi、蓝牙、Z-wave等短距离通信技术;另一类是LPWAN(low-power Wide-Area Network,低功耗广域网),即广域网通信技术。
LPWA又可分为两类:一类是工作于未授权频谱的LoRa、SigFox等技术;另一类是工作于授权频谱下,3GPP支持的2/3/4G蜂窝通信技术,比如EC-GSM、LTE Cat-m、NB-IoT等。
1、WIFI,WIFI是目前应用最广泛的无线通信技术,传输距离在100-300M,速率可达300Mbps,功耗10-50mA。
2、Zigbee,传输距离50-300M,速率250kbps,功耗5mA,最大特点是可自组网,网络节点数最大可达65000个。
3、电力载波,传输距离可达500M,速率可达500Mbps,最大优点是可基于电力线传输,无需布线。
4、蓝牙,传输距离2-30M,速率1Mbps,功耗介于zigbee和WIFI之间。UWB(Ultra Wideband),是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWB能在10米左右的范围内实现数百Mbit/s至数Gbit/s的数据传输速率。
5、Z-wave:Z-Wave是由丹麦公司Zensys所一手主导的无线组网规格,Z-wave联盟(Z-wave Alliance)虽然没有ZigBee联盟强大,但是Z-wave联盟的成员均是已经在智能家居领域有现行产品的厂商,该联盟已经具有160多家国际知名公司,范围基本覆盖全球各个国家和地区。
6、RF:无线射频的20世纪90年代兴起的一种非接触式的自动识别技术。射频技术相对于传统的磁卡及IC卡技术具有非接触式、阅读速度快、无磨损等特点。无线射频技术在阅读器和设哦卡之间进行非接触双向数据传输,以达到目标识别和数据交换的目的。与传统的条形码、磁卡及IC卡相比,射频卡具有防冲突功能,能同时处理多张卡片,基于以上特点,平常用的大多数刷卡门禁用的都是射频技术,另外无线射频也被一些厂家应用在智能家居中。
7,NB-IoT是IoT领域一个新兴的技术,支持低功耗设备在广域网的蜂窝数据连接,也被叫作低功耗广域网(LPWA)。NB-IoT支持待机时间长、对网络连接要求较高设备的高效连接。据说NB-IoT设备电池寿命可以提高至至少10年,同时还能提供非常全面的室内蜂窝数据连接覆盖。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12886249.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存