物联网边带是什么

物联网边带是什么,第1张

当前,物联网(IoT)技术领域充释着各种标准,像NB-IoT、LoRa、SigFox等,他们正通过各自擅长的技术和应用抢夺IoT风口,以争取在这片广阔的市场上取得优势。
这里写描述
NB-IoT是由电信标准延伸而出的,主要是由电信运营商支持,而LoRa则是一个商业运用平台,两者主要区别在于商业运营的模式:NB-IoT基本是由电信运营商来把控运营,所以使用者必须使用它的网关及服务,而LoRa就量对开放一些,有各种不同的组合方式,商业的模式是完全不同的。
技术层面上来看,NB-IoT和LoRa的差异其实并不是很大,属于各有优劣。而相对于某些领域,国内有一些用户在并行使用这两种技术和网络。NB-IoT相对而言是受限于基站的,而LoRa则要加入一个网关相对简单容易,并且总的来说价格要比NB-IOT低廉。用户可以根据需求,增加不同的网关覆盖。所以从覆盖程度上来说LoRa的覆盖程度可能比NB-IoT更广一点。
LPWAN又称LPN,全称为LowPower Wide Area Network或者LowPower Network,指的是一种无线网络。这种无线网络的优势在于低功耗与远距离,通常用于电池供电的传感器节点组网。因为低功耗与低速率的特点,这种网络和其他用于商业,个人数据共享的无线网络(如WiFi,蓝牙等)有着明显的区别。
在广泛应用中,LPWAN可使用集中器组建为私有网络,也可利用网关连到公有网络上去。
LPWAN因为跟LoRaWAN名字类似,再加上最近的LoRaWAN在IoT领域引起的热潮,使得不少人对这两个概念有所混淆。事实上LoRaWAN仅仅是LPWAN的一种,还有几种类似的技术在与LoRaWAN进行竞争。
概括来讲,LPWAN具有如下特点:
• 双向通信,有应答
• 星形拓扑(一般情况下不使用中继器,也不使用Mesh组网,以求简洁)
• 低数据速率
• 低成本
• 非常长的电池使用时间
• 通信距离较远
LPWAN适合的应用:
• IoT,M2M
• 工业自动化
• 低功耗应用
• 电池供电的传感器
• 智慧城市,智慧农业,抄表,街灯控制等等
LoraWAN和Lora之间关系
虽然一样是因为名字类似,很多人会将LoRaWAN与LoRa两个概念混淆。事实上LoRaWAN指的是MAC层的组网协议。而LoRa只是一个物理层的协议。虽然现有的LoRaWAN组网基本上都使用LoRa作为物理层,但是LoRaWAN的协议也列出了在某些频段也可以使用GFSK作为物理层。从网络分层的角度来讲,LoRaWAN可以使用任何物理层的协议,LoRa也可以作为其他组网技术的物理层。事实上有几种与LoRaWAN竞争的技术在物理层也采用了LoRa。
LoraWAN的主要竞争技术
这里写描述
如今市场上存在多个同样使用LoRa作为物理层的LPWAN技术,例如深圳艾森智能(AISenz Inc)的aiCast。aiCast支持单播、多播和组播,比LoRaWAN更加复杂完备。许多LoRaWAN下不可能的应用因此可以实现。
Sigfox使用慢速率的BPSK(300bps),也有一些较有前景的应用案例。
NB-IoT(Narrow Band-IoT)是电信业基于现有移动通信技术的IoT网络。其特点是使用现有的蜂窝通信硬件与频段。不管是电信商还是硬件商,对这项技术热情不减。
关键技术Lora简介
LoRaWAN的核心技术是LoRa。而LoRa是一种Semtech的私有调制技术(2012收购CycleoSAS公司得来)。所以为了便于不熟悉数字通信技术的人们理解,先介绍两个常见的调制技术FSK与OOK。选用这两个调制方式是因为:
1这两个是最简单、最基础、最常见的数字通信调制方式
2在Semtech的SX127x芯片上与LoRa同时被支持,尤其是FSK经常被用来与LoRa比较性能。
OOK
OOK全称为On-Off Keying。核心思想是用有载波表示一个二进制值(一般是1,也可能反向表示0),无载波表示另外一个二进制值(正向是0,反向是1)。
在0与1切换时也会插入一个比较短的空的无载波间隔,可以为多径延迟增加一点冗余以便接收端解调。OOK对于低功耗的无线应用很有优势,因为只用传输大约一半的载波,其余时间可以关掉载波以省功耗。缺点是抗噪音性能较差。
这里写描述
FSK
FSK全称为Frequency Shift Keying。LoRaWAN协议也在某些频段写明除LoRa之外也支持(G)FSK。FSK的核心思想是用两种频率的载波分别表示1与0。只要两种频率相差足够大,接收端用简单的滤波器即可完成解调。
对于发送端,简单的做法就是做两个频率发生器,一个频率在Fmark,另一个频率在Fspace。用基带信号的1与0控制输出即可完成FSK调制。但这样的实现中,两个频率源的相位通常不同步,而导致0与1切换时产生不连续,最终对接收器来讲会产生额外的干扰。实际的FSK系统通常只使用一个频率源,在0与1切换时控制频率源发生偏移。
这里写描述
GFSK是基带信号进入调制前加一个高斯(Gaussian)窗口,使得频率的偏移更加平滑。目的是减少边带(Sideband)频率的功率,以降低对相邻频段的干扰。代价是增加了码间干扰。
对于这一方面的研究实验发现:学习Lora调制技术的一些准备及发现
然而,对于“悠久历史积累”和高安全、易部署等综合优势的LoRa阵营来说,最近几年里,在技术和落地方面虽取得了长足的进步,但离真正的规模、解决行业客户的切实问题是有着不小的差距。那么,究竟是技术壁垒突破较难?产业链生态不健全?亦或者是商业模式限制了从业者对市场规模的想象?对于LoRa产业链的广大从业者而言,找到制约LoRa技术大规模发展的瓶颈,并联手产业合力突围对推动产业良性发展至关重要。

在电子设备制造过程中,连接器是至关重要的组件之一。连接器的种类繁多,其中板对板连接器和线对板连接器是两种常见的连接器。下面将对这两种连接器进行优劣比较。

板对板连接器

板对板连接器又被称为板间连接器,它们通常用于将两个或多个电路板连接在一起。这种连接器可以提供稳定的连接并支持高速数据传输。此外,板对板连接器还有以下优点:

可靠性高:板对板连接器可以提供牢固的连接,不容易松动或断开。

高速传输:板对板连接器通常可以支持高速数据传输,对于需要高速数据传输的应用非适用。

适用范围广:板对板连接器可以用于连接各种类型的电路板,包括刚性电路板和柔性电路板。

然而,板对板连接器也存在一些缺点:

安装困难:板对板连接器的安装需要一定的技巧和经验,对于非专业人士来说可能会比较困难。

成本较高:板对板连接器通常比线对板连接器价格更高,这可能会增加产品成本。

线对板连接器

线对板连接器是一种将电线连接到电路板的连接器。这种连接器通常用于连接外围设备或传感器到电路板上。线对板连接器的优点包括:

易于安装:线对板连接器的安装非常简单,即使是非专业人士也能轻松完成。

节省空间:线对板连接器通常比板对板连接器更小,可以节省空间。

成本较低:线对板连接器通常比板对板连接器价格更低,可以降低产品成本。

然而,线对板连接器也存在一些缺点:

可靠性较低:线对板连接器相对于板对板连接器来说可靠性略低,容易出现松动或断开的情况。

数据传输速度慢:由于线对板连接器的设计,它通常不能支持高速数据传输。

综上所述,当选择连接器时,应该根据实际应用需求和产品成本来选择合适的连接器。如果需要高速数据传输和更高的可靠性,板对板连接器可能更适合。如果需要快速安装和低成本,则线对板连接器可能更适合。

6月11日,国内领先的宽带IOT无线传输方案提供商创通电子在上海张江举行了新品发布会。这家成立于2010年,由留美归国博士创办的高 科技 企业,已于2011年在上海张江成立分公司捷 锐通 。

新产品、新技术发布

在发布会上,创通电子产品副总裁周永贵给大家带来了新产品发布,通过与公司其他人员的配合,给大家生动演示了产品的部分功能。

01 “隐形的AI眼睛”:WIFI雷达生物探测

WIFI雷达生物探测 是目前真正意义上的非接触式生命体征检测技术,在没有摄像头(摄像头有隐私画面被曝光的安全风险)的前提下,利用WIFI工作中的无线信号,结合先进的信号处理技术,对周围环境的变化进行探测,从而识别 生物入侵、人体动作、甚至生命体征。

无线信号覆盖区域内的人员步行、肢体动作或者起身蹲下跌倒等动作都会被检测。比如在独居老人的房间,老人不慎摔倒,这个 “隐形的AI眼睛” 就会立即做出反应,同时可以很好的保护老人隐私。当室内无人或者人员没有动作的情况下系统会识别不产生任何反应,方便易用。 WIFI雷达生物探测技术和IOT方案结合,可以广泛应用于银行、医院、家居、酒店、商超、仓储等领域。

02 万物与5G互联:AI原力边算小站

随着5G时代的到来,大数据、人工智能、物联网、云计算等形成的聚合效应,正推动着“万物 互连 ”迈向“万物智联”,智能可穿戴设备、智能家电、智能网联 汽车 、智能机器人等数以万亿计的新设备将接入网络,形成海量数据,应用呈现爆发式增长。

创通电子发布推出的 原力边算小站AForce V100 ,能够实现万物与5G的互联,同时把智能分析推向前端,更快更好地对海量数据进行处理并及时反馈。不但能有效节省海量数据所带来的高带宽需求,节省资费,同时能更快的对现场问题做及时处理,大大提高时效性。 原力边算小站可以有效的应用在5G+AIoT、户外设施检测安防、自动驾驶车路协同等场景。

03 实现收发同步:GPS同步小微波基站

多个应用、多点布局


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12899362.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存