“农业物联网”就是物联网技术在农业生产、经营、管理和服务中的具体应用。按照物联网技术架构,农业物联网仍然通过“感知—传输—应用”的途径来实现对农业的应用。“感知”就是运用各类传感器,如温湿度传感器、光照强度传感器、PH值传感器、CO2传感器等设备,实时地采集大田种植、设施园艺、畜禽养殖、水产养殖和农产品运输等环境中的温度、湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数信息;“传输”就是建立数据传输和转换方法,通过局部的无线网络、互联网、移动通信网等各种通信网络交互传递,实现农业生产环境信息的有效传输;“应用”就是将获取的大量农业信息进行融合、处理,使技术人员对多个大棚的环境进行监测控制和智能管理,保证农作物有一个良好的、适宜的生长环境,达到增产、改善品质、调节生长周期、提高经济效益的目的,进而实现农业生产集约、高产、优质、高效、生态和安全的目标。
蔬菜大棚、温室大棚主要用于不适合蔬菜生长的季节,模拟蔬菜生长的自然条件,提供蔬菜适合生长的环境,而这个环境的实现不能凭感觉,需要引入农业物联网温室环境监控技术解决蔬菜生长环境的可控性,达到提高蔬菜生产效益的目的。
一、蔬菜温室大棚控制系统构建:
一个完整的蔬菜温室大棚自动控制系统包括数据采集、数据传输、数据分析和生产 *** 作系统等部分,每个部分在蔬菜生产中具有不同的功能,这些功能组合起来完成蔬菜生产的全过程。
二、蔬菜温室大棚物联网环境自动控制系统主要包括以下几个分系统部分:
1数据采集系统:
数据采集系统由无线传感器、供电电源或者蓄电池等组成;现场的监测元件包括温湿度、CO2浓度、土壤温湿度、土壤养分等监测元件。数据采集系统主要负责温室大棚内部的光照、温度、湿度和土壤含水量以及视频等数据的采集和控制。
2数据传输系统:
数据传输系统由数据采集传感器,包括温度传感器、湿度传感器、光照强度传感器、光合有效辐射传感器、土壤温湿度传感器、CO2传感器、风向传感器等组成。传输方式:外部网络以基于IP网络技术和GPRS通信网络为基础进行传输;内部网络则采用短距离、低功率的ZigBee无线通信技术。基于ZigBee的无线传输模式中,传感器采集的数据通过ZigBee发送模块传送到中心节点上,同时,用户终端和一体化控制器间传送的控制指令也传送到中心节点上,中心节点再经过边缘网关将传感器数据、控制指令发送到上位机的业务平台。技术人员可以通过有线网络/无线网络访问上位机系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。
3数据分析系统:
数据分析及显示部分包括电脑、软件、无线接收模块、报警系统,依据不同的环境、作物、生长期,实施不同的控制方案。
4实地环境 *** 控系统:
该分系统包括的灌溉控制系统可进行滴浇灌和微喷雾系统的控制,实现远程自动灌溉;土壤环境监测系统则利用土壤水分传感器、土壤湿度传感器等来实时获取土壤水分、湿度等数据,为灌溉控制系统和温湿度控制系统提供环境信息;温湿度监控系统可利用高精度传感器来采集农作物的生长环境信息,设定环境指标参数,当环境指标超出参数范围时,可自动启动风机降温系统、水暖加温系统、空气内循环系统等,以进行环境温湿度的调节。
利用农贸行业物联网建设的蔬菜温室大棚,能为温室大棚种植提供有效的控制蔬菜的生长环境的先进技术,使蔬菜获得适宜的生长环境,增加产量,以实现跨季节的蔬菜培育。
3月27日,阳光明媚。上午十时许,在高楼镇高楼村泰香农业公司生产基地里,20多名工人正在整理大棚,为下季栽培做准备。“目前,羊肚菌的春季采摘已经结束。由于公司在大棚中引进了新技术,为羊肚菌的高产优质提供了技术保障。”泰香农业公司技术部负责人文星说。
文星所说的大棚运用的物联网技术,听起来还有些新鲜。它究竟是一个什么的东西,又是如何在农业生产上发挥作用的呢
简单地说,农业物联网就是在大棚控制系统中,运用物联网系统的温度传感器、湿度传感器等设备,检测环境中的温度、湿度、光照等情况,通过各种仪器仪表实时显示并自动控制调节,保证农作物有一个良好的、适宜的生长环境。
文星一边介绍,一边带领记者走进了安置着一些设备的大棚,实地了解物联网的运用情况。
“这个叫监测管和喷头,它负责监测大棚里土壤、空气的湿度、温度。”文星指着大棚里的一个圆型设施说,当土壤、空气中的湿度、温度超过农作物的生长需要时,它会将信息反馈到中心控制室,中心控制室经过自动分析后,会将指令发送给大棚中间上空的喷头,喷头会喷出水雾降温或增湿来调节湿度和温度。
记者在采访中了解到,这套设施由卷膜器、监测管、换排气阀、供水泵和中心控制柜构成。喷头负责喷水降温,换排气阀负责抽湿散热,卷膜器负责四周薄膜的升降来调控温度,而这一切,都是根据中心控制柜的智能化仪器仪表发出的指令自动完成。
这套设备总的称为体,是现代信息技术在现代农业上的应用。据了解,该系统工作时可以及时检测到农作物的生长环境,实时采集图像、土壤、气象、温度、光照度等信息,通过高清摄像头等传感器设备传输汇集到云数据平台,再从手机APP上就可以看到农业园的各项关键监测数据。中心控制柜将接收的数据进行自动分析后,随即将发出的指令反馈到设备终端,设备终端会自动启动排湿、降温、散热、喷水、升温等有关功能,把生长环境调控到最佳的程度。
据了解,该基地自建起物联网技术体系后,为羊肚菌提供了最好的生长条件,实现了高产和质优的目标。
“农业物联网改变了过去农民种地凭经验、靠天吃饭的状况,实现了对瓜果蔬菜等作物需要的水、肥和温度、湿度、光照等进行实时定量的智慧把控,可以达到调节农作物生长周期、改善品质、增加产量、提高经济效益的目的。”区蔬菜生产办公室负责人介绍说,物联网设施进入蔬菜行业并成功应用,目前在铜梁区还是第一家。它的引进和成功应用,开启了物联网现代农业技术服务蔬菜生产的先河,值得在有较好条件的农业公司和专业合作社推广。
该负责人还介绍说,当前,引进物联网技术体应该瞄准开发中高端和高产值的农产品,特别适宜在蔬菜、花木、果苗育苗基地应用。值得注意的是,由于投入较大,加之管理的技术要求高,必须配有专业的技术管理人员,才能物尽其用,发挥出好的效果。
发掘科技一家专业的物联网硬件方案公司:发掘科技
2015-04-23 国农互联各国农业物联网发展概况
美国
推进农业数据标准化。从长期来看,农业物联网需要的是可以相互识别的可 *** 作标准,这样不同设备才能在一起工作,否则不同设备传回的信息格式不能兼容。目前AgGateway和OADA正在研究农业数据标准化的问题。AgGateway是一家非营利性的商业联合组织,致力于推进电子商务在农业领域的发展和推动信息通信技术在农业的使用。OADA是一个帮助农民全面、安全获取数据的开放式项目。美国农业与生化工程师协会(ASABE)也在支持建立农业数据标准的工作。
大农场引领农业物联网应用。就农业物联网技术覆盖主体而言,大农场成为美国农业物联网技术的引领者,在农业物联网技术推广中起着示范作用。美国大农场采用物联网设备的数量相对更多,研究显示,美国大农场对技术的采用率高达80%。而对于小农场而言,由于设备的安装和维护成本高,它们使用物联网设备的数量相对较少,不过在大农场的示范作用带动下,也将会有越来越多的小农场采用物联网技术。
信息化基础设施奠定农业物联网发展基础。从美国农业物联网的发展现状来看,其信息化基础设施完备,为美国农业物联网的发展创造了优越的条件。美国政府每年用于农业信息网络建设方面的投资约为15亿美元,已建成世界最大的农业计算机网络系统AGNET,可以为美国农业物联网的发展提供强大的信息资源。同时,美国建立了农业技术信息数据库,如BISIS(生物科学情报社)、CAB(英联邦农业局)、AGRICOLA(美国国家农业数据库)和AGRIS(FAO农业情报体系)等。
日本
政府大力推动农业物联网发展。农业物联网在2004年被列入日本政府计划。当时日本总务省提出U-Japan计划,其核心是力求实现人与人、物与物、人与物之间的相连,在未来形成一个人或物均可互联、无处不在的网络社会,其中就包括农业物联网技术。目前,日本政府不断加强对智慧农业的扶持补助,通过一系列补助措施,到2020年日本农业信息技术化规模将达到580亿至600亿日元,计划在十年内以农业物联网为信息主体源普及农用机器人,预计2020年市场规模将达到50亿日元。
制造商推广农业物联网技术知识。日本农户在最初引进农业物联网时,由于成本过高、技术较难掌控等原因,物联网设备长时间处于停用状态。后来在制造商与当地农协工作人员的帮助下,逐渐接受并理解了物联网技术,比如在家里看看农作物的照片,并对比一下各类数据便可管理偌大的土地,并可较以前减少一半的工作量。
产、官、学协同研发农业物联网技术。近年来,日本农业物联网技术主要由NEC、富士通、日立等大型公司的IT部门牵头研发,并与三井物产等农用品开发商合作。日本非常注重引进和发展符合日本国情的精确农业。目前,日本产、官、学合作进行的农业物联网技术研究主要集中在两个方面:一是精确农业的基础研究,提供农业生产应用的作物生长模型数据库,可用于农业物联网的农业生产指导信息平台。二是精确农业机械的研究,提供农业物联网的智能化 *** 作终端。
英国
政府考核基于物联网的农业信息化。英国政府通过执行欧盟的单一补贴政策,把农业环境保护、农业产出与效益等很好地纳入补贴政策的考核指标,把农业机械的信息化程度作为重要考核指标予以支持,督促农业生产者广泛利用农业物联网,促进信息技术与生物技术等新技术融合,推动开展农业生产,从而推动农业物联网的发展,提高农业生产的智能化、精确化、高效化和自动化水平,实现环境保护、生产发展、效益提高、收入增加、资源节约等多重目标的均衡发展。
政府引导、多元市场主体拉动农业物联网建设。英国发展农业物联网主要依靠市场机制进行推动,政府主要是制定引导政策,采取扶持措施引导农业生产者,电信运营商、IT公司等农业物联网的主要建设者参与农业物联网建设。以政策为指引,以需求为导向,利用市场机制,按照有偿、自愿、效益的原则,鼓励各类市场主体开展信息技术的研发、推广和应用,大大提高了农业物联网技术的实用性、针对性、可持续性,能够较好地满足农业发展的需要。
注重涉农人员信息化水平的提高。英国政府十分重视涉农人员的信息化技能和知识的培训与教育,从上世纪90年代开始实施农村教育信息化计划。政府制定政策,把信息技术课列为全国中小学必修课程,并拟定了具体考核标准,采取了有效措施加强农村信息技术教师队伍建设,建设了各种网络学校和培训中心,开展了适宜于农村地区的各种网络或者视频远程教育,一些地方政府在教育经费的投入中要求不低于6%用作计算机和网络费用,一些农村制定了学生和计算机、图书馆的具体比例等,这些措施有效促进了信息化知识和技术在农村的普及,涉农人员的知识水平得到很大提高,这对农业物联网的发展至关重要。
以色列
以农业产业化、规模化促进农业物联网发展。农用土地有效集中和生产经营组织化是以色列农业物联网发展的基础。以色列945%的土地为国家所有,私人土地仅占55%。农业生产经营主要采取较为独特的集体农场(基布兹)和农业合作社(莫沙夫)两种形式。应运而生的是由多家集体农场和农业合作社联合组建的区域合作组织,它使整个农业生产经营有了较高的组织化程度,这些农业经营主体更加关心并追求农业生产经营的质量和效益,对应用农业物联网技术的愿望更加强烈,并且可以为应用农业物联网技术提供必要的资金和技术支撑。
农业科技创新服务体系支撑农业物联网发展。高度发达的农业科技和完善的农业服务体系是以色列农业物联网发展不可比拟的优势。以色列农业增产的96%靠科技,其高度发达和集约化的农业是以强大的农业科研、教育和推广体系作为后盾和支柱的。政府每年用于农业科研与技术推广方面的经费高达数亿美元,占GDP的比例位居世界前列。目前,以色列已建立一整套由政府部门、科研机构和农业合作组织紧密配合的农业研究和推广体系。以色列鼓励科研人员和推广人员结合自身的专业特长,开办或联办私人示范农场、科技型开发企业、推广型的培训示范基地等。
滴灌推动物联网技术的应用。滴灌在一般人印象中,就是布设大量打上微小孔洞管线的一种节水浇灌方式,但以色列人运用物联网技术把它做到了极致。以一个深埋地下的简单喷嘴为例,它凝聚了大量的高科技,它由电脑控制,依据传感器传回的土壤数据,决定何时浇水、浇多还是浇少,通过物联网技术,不仅节约了宝贵的水资源,而且节约了人力成本。铺完管线以后,未来大量农田的灌溉将由少数几个农民通过智能设备来控制。
国外农业物联网发展经验对我国的启示
政府力推农业物联网建设
无论是美国这样的农业强国,还是以色列这样的农业资源匮乏的国家,在他们农业物联网的发展过程中,政府都十分重视农业物联网发展的战略规划、农业物联网技术的研发和农业技术信息数据库的建设,并以此加快农业物联网技术的采纳和应用,从而推动农业现代化进程。因此,我国政府应强化农业物联网发展的顶层设计,促进农业物联网技术的研究开发。此外,政府在推动城镇化发展的同时,大力引导农业生产的产业化也是农业物联网推广应用的重要动力。
以农业信息化基础设施建设为基础
农业信息化基础设施是指农业信息的收集、传输、反馈、检测、控制、存储的载体、执行机构、数据库和管理软件等。例如,农业信息化基础设施的完备为美国农业物联网的发展创造了极其优越的条件,因此,大力促进农村宽带网络建设,建设和完善农业信息化专家系统和管理软件,配置性能完善的控制系统、通信传输、电力供给等信息化元器件,这一系列农业信息化基础设施的建设是我国发展农业物联网的重要基础。
以农业产业化、规模化为动力
从美国、以色列等国家农业物联网发展状况来看,农业产业化、规模化为农业物联网的发展注入了强大动力。农业产业化将变革农业组织管理结构,实现农业组织管理的现代化。专业大户、家庭农场、农业经济合作社和龙头企业等新型农业组织会涌现出来,相比传统分散经营的农户而言,这些新型农业经营主体更加关心并追求农业生产经营的质量和效益,对应用信息技术的愿望更加强烈,这些新型农业生产组织必然会推动农业物联网技术的应用。因此,我国应大力推动农业产业化,在农业产业化进程中,龙头企业、专业大户、农业经济合作组织等新型农业组织必将凭借在技术、人才、资金等方面的优势,提高农业物联网的应用水平。
以农业物联网科技创新服务体系建设为保障
日本、以色列等进入农业现代化的国家都拥有高度发达的农业科技创新服务体系。建设农业物联网科技创新服务体系,可以促进农业物联网技术的研发、推广和应用。因此,我国应加大农业物联网科技创新服务体系建设,比如从培养、引进、使用三个环节加强农业物联网人才队伍建设,可以引进海外人才,培养农业物联网研究领域的学科带头人及人才团队,制定高层次创新人才培养计划等。同时,加强农业科技创新与研发平台建设,加快推进以农业物联网研究为立足点的重点实验室等知识创新平台建设; 重点实施科技“110”综合信息服务工程、专家大院工程、企业和农村科技特派员创业工程、科技入户工程四大示范服务与推广工程,强力推进农业物联网技术服务推广体系建设。
加大对涉农人员农业信息科技教育
日本、英国等国家在推进农业物联网发展的过程中,都涉及对相关人员进行农业信息科技方面的教育,这不仅有利于涉农人员事先对农业物联网技术进行评估,提高他们应用先进信息技术的积极性,而且有利于他们在具体应用农业物联网技术时能够得心应手,从而推动农业物联网技术的传播。我国农民数量众多,农村教育水平较低,农民整体文化水平不高,国家即使研发出高科技的农业物联网技术,虽然能够转变农业生产方式,提高农业生产效率,但在落后的农村很难推广应用,我国涉农人员的信息科技水平严重阻碍了农业科技的推广。所以,我国要通过农村信息服务站、“阳光培训”工程、专题培训班、网络学校、远程教育等多种方式,开展多层次、全方位的农民信息化知识和技能培训,提高涉农人员的信息科技水平,为我国农业物联网的发展提供最基本的保障。一、什么是农业物联网?
No1:农业物联网是农业现代化的重要标志
农业物联网的实质是将物联网技术应用于农业生产经营,使其更具有信息化、智能化。农业物联网的实例化应用就是在感知端使用大量的传感设备(如农业环境信息的传感器、图像采集、RFID 等),广泛地采集农业生产、管理、经营等环境的各类信息(如大田种植、设施园艺、畜牧水产养殖、农产品溯源等领域),建立相对统一的数据传输协议与多源的数据格式转换办法,因地制宜交互使用无线传感器网、移动通信网和互联网等传输通道,实现农业信息多尺度、多源有效的传递。最后通过云计算、大数据等多重信息技术的深度融合与处理,通过智能化调控终端实现农业的闭环控制,实现农业的自动化、最优化控制。实际上,物联网是智慧农业的核心。
“农业物联网主要有感知、传输和控制三大作用,”中国农科院信息所所长许世卫解释,“农业物联网不仅能感知水、肥、热、气等外部环境变量,还能感知生物本体,比如对水稻叶片中的各种营养元素的感知。如果感知到水稻叶片中叶绿素含量降低,说明缺氮了,需要添加氮肥,而等到肉眼看到叶片发黄再追肥就晚了。”
No2:农业物联网架构模型
根据计算机网络架构模型的研究方法,国内外将农业物联网架构模型分为感知层、传输层(网络层)、处理与应用层三个层次。
感知层主要包括各类传感器、RFID、RS、GPS以及二维条形码等,采集各类农业相关信息(包括光、温度、湿度、水分、肥力、土壤墒情、土壤电导率、溶解氧、酸碱度和电导率等),实现对“物”的相关信息的识别和采集。传输层是在现有网络基础上,将感知层采集的各类农业相关信息通过有线或无线方式传输到应用层 ;同时,将应用层的控制命令传输到感知层,使感知层的相关设备采取相应动作,比如开关打开或者关闭、释放氧气、增加温度或者湿度以及设备重新定位等。
公共处理平台包括各类中间件以及公共核心处理技术,实现信息技术与行业的深度结合,完成物品信息的沟通、共享、决策、汇总等。
具体的应用服务系统是基于物联构架的农业生产架构模型的最高层,主要包括各类具体的农业生产过程系统,如大田种植系统、设施园艺系统、水产养殖系统、畜禽养殖系统、农产品物流系统等。通过这些系统的具体应用,保证产前正确规划以提高资源利用率,产中精细管理以提高资源利用率,产后高效流通实现安全溯源等多个方面,促进农业的高产、优质、高效、生态、安全。
(转自搜狐科技网)
二、农业物联网未来发展趋势
目前,我国农业正处于传统农业向现代农业转型期,农业物联网将发挥独特而重要的作用,也为现代农业的发展提供了前所未有的机遇。利用智能化信息管理技术发展现代农业已成为当今各个发达国家农业发展的热点之一。
农业物联网发展现状:2013年,农业部发布了《农业物联网区域试验工程工作方案》,方案中明确提出,实施区试工程,对于探索农业物联网理论研究、系统集成、重点领域、发展模式及推进路径,提高农业物联网理论及应用水平,促进农业生产方式转变、农民增收有重要意义。从深层次阐述了物联网技术能够提高农业生产效率,提升农产品附加值,实现农业增产与增收。
在发达国家,智慧农业已进入知识的处理、自动控制的开发以及网络技术的应用,渗透到农业各方面。 据介绍,国外采用物联网相关技术,在温室生产中大量采用无线传感器管理、调控温度湿度、营养液供给以及pH值(氢离子浓度指数)、EC值(可溶性盐含量)等,使设施蔬菜栽培条件达到最适宜水平。
借助物联网技术和云计算技术,在远程支持与服务平台上,建立智慧农业远程托管中心,实现远程栽培指导、远程故障诊断、远程信息监测、远程设备维护等;将植物生长信息和生物技术、食品安全技术相结合,从种植各个环节解决农产品的安全问题;充分利用先进的RFID、物联网、云计算等技术,实现农业生产监测管理和产品安全追溯。目前,这项技术不但达到国际先进水平,而且已推向全国市场,广泛应用于现代农业园区、大型农场、农业专业合作社等,深受用户的认可,取得了较好的成绩。
农业物联网,即在大棚控制系统中,运用物联网系统的温度传感器、湿度传感器、Ph值传感器、光传感器、CO2传感器等设备,检测环境中的温度、相对湿度、Ph值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使种植人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的适宜条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益。
种植业离不开浇水、施肥、打药,农民种地凭经验、靠感觉,他们面朝黄土背朝天的在田里耕作,并把这些经验与方法一代代相传,然而现在瓜果蔬菜该不该浇水,施肥、打药,怎样才能保持精确的浓度,温度、湿度、光照、CO2浓度,如何实行按需供给?这些以往在作物不同生长周期凭经验靠感觉“模糊”处理的问题,在农业物联网面前开始了实时定量的“精确”把关。物联网创造的“种地”模式的出现,已经成为打破传统农业弊端的一种新型农业模式。这种通过物联网技术开启的智慧风暴,让农业实现了“环境可测、生产可控、质量可溯”的目标。确保农产品质量安全,引领现代农业发展。
(转自搜狐网-鑫芯物联)
编辑于 2018-05-26 · 著作权归作者所有
赞同 1
评论
展当前,智慧农业、农业物联网和智能大棚控制系统被不断的提起和广泛热议。那么,这三者如何区别?这里我们重点探讨一下。
一、智慧农业
1、定义
智慧农业就是将物联网技术运用到传统农业中去,运用传感器和软件通过移动平台或者电脑平台对农业生产进行控制,使传统农业更具有“智慧”。除了精准感知、控制与决策管理外,从广泛意义上讲,智慧农业还包括农业电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容。
2、应用领域
农业生产环境监控:通过布设于农田、温室、园林等目标区域的大量传感节点,实时地收集温度、湿度、光照、气体浓度以及土壤水分、电导率等信息并汇总到中控系统。农业生产人员可通过监测数据对环境进行分析,从而有针对性地投放农业生产资料,并根据需要调动各种执行设备,进行调温、调光、换气等动作,实现对农业生长环境的智能控制。
食品安全:利用技术,建设农产品溯源系统,通过对农产品的高效可靠识别和对生产、加工环境的监测,实现农产品追踪、清查功能,进行有效的全程质量监控,确保农产品安全。物联网技术贯穿生产、加工、流通、消费各环节,实现全过程严格控制,使用户可以迅速了解食品的生产环境和过程,从而为食品供应链提供完全透明的展现,保证向社会提供优质的放心食品,增强用户对食品安全程度的信心,并且保障合法经营者的利益,提升可溯源农产品的品牌效应。
二、农业物联网
1、定义
农业物联网,即在大棚控制系统中,运用物联网系统的温度传感器、湿度传感器、PH值传感器、光传感器、CO2传感器等设备,检测环境中的温度、相对湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使技术人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的最佳条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益的目的。
2、应用功能
a实时监测功能
通过传感设备实时采集温室(大棚)内的空气温度、空气湿度、二氧化碳、光照、土壤水分、土壤温度、棚外温度与风速等数据;将数据通过移动通讯网络传输给服务管理平台,服务服管理平台对数据进行分析处理。
b远程控制功能
针对条件较好的大棚,安装有电动卷帘,排风机,电动灌溉系统等机电设备,可实现远程控制功能。农户可通过手机或电脑登录系统,控制温室内的水阀、排风机、卷帘机的开关;也可设定好控制逻辑,系统会根据内外情况自动开启或关闭卷帘机、水阀、风机等大棚机电设备。
c查询功能
农户使用手机或电脑登录系统后,可以实时查询温室(大棚)内的各项环境参数、历史温湿度曲线、历史机电设备 *** 作记录、历史照片等信息; 登录系统后,还可以查询当地的农业政策、市场行情、供求信息、专家通告等,实现有针对性的综合信息服务。
d警告功能
警告功能需预先设定适合条件的上限值和下限值,设定值可根据农作物种类、生长周期和季节的变化进行修改。 当某个数据超出限值时,系统立即将警告信息发送给相应的农户,提示农户及时采取措施。
三、智能大棚监控系统
1、定义
深圳信立科技有限公司智能大棚监控系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。
智能大棚监控系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(喷灌、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。 该系统的使用,可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。
2、系统组成
整个系统主要三大部分组成:数据采集部分、数据传输部分、数据管理中心部分。
A、数据管理层(监控中心):硬件主要包括:工作站电脑、服务器(电信、移动或联通固定IP专线或者动态ip域名方式); 软件主要包括: *** 作系统软件、数据中心软件、数据库软件、温室大棚智能监控系统软件平台(采用B/S结构,可以支持在广域网进行浏览查看)、 防火墙软件;
B、数据传输层(数据通信网络):采用移动公司的GPRS网络传输数据,系统无需布线构建简单、快捷、稳定;移动GPRS无线组网模式具有:数据传输速率高、信号覆盖范围广、实时性强、安全性高、运行成本低、维护成本低等特点;
C、数据采集层(温室硬件设备):远程监控设备:远程监控终端;传感器和控制设备:温湿度传感器、二氧化碳传感器、光照传感器、土壤湿度传感器、喷灌电磁阀、风机、遮阳幕等;
物联网在农业领域的应用如下:
目前物联网在农业领域有很多应用,以物联网和现代信息化技术为纽带,通过“建立体系、平台管理”的思路,将农业园区进行统一规划,建立了视频监测系统、物联网监测与控制系统、水肥一体化智能灌溉系统、智慧农业展示系统,分步建设现代化服务体系,打造智慧型现代农业产业链的生态圈。
视频监测系统主要用于大棚内部安防检测,观察作物的生长态势。系统由前端摄像机采集数字图像信号,通过传输系统将信号传输至本地监控中心系统,由该系统进行控制、切换、显示、录像、回放等 *** 作,实现系统的各项功能,同时通过本地广域网线路,中心监测系统可使用电脑或手机进行远程显示、录像和控制远程视频。
物联网监测与控制系统
系统是以物联网为基础,应用农业物联网传感器作为支撑,在农业生产管理过程中,可以进行实时的环境参数采集,将光照、空气温湿度、二氧化碳浓度、土壤温湿度等采集到数据库,并通过网络将其传输到控制平台。
系统可以根据数据进行智能判断,远程控制温室大棚设备(包括风机、湿帘、滴灌设备等),进而进行环境调控,以“对症下药”的方式,满足温室大棚作物的生长要求,智能温室大棚控制系统在农业生产种植中的应用,正真实现了种植自动化、管理智能化、 *** 作简单化,不仅提升了温室大棚种植技术水平,而且降低了农业生产的成本费用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)