行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)
定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
物联网行业发展前景及趋势分析
1、产业物联网占比逐渐上升
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、市场规模不断增大
目前,物联网在全球呈现快速发展趋势,欧、美、日、韩等国均将物联网作为重要战略新兴产业推进,但在繁荣景象背后却仍存在着众多阻碍发展的因素。其中核心标准的缺失,尤其是作为顶层设计的物联网参考架构等基础标准目前仍处于空白,基于争夺物联网产业主导权,各国对国际标准方面的竞争亦日趋白热化。
新冠疫情对于物联网行业来说犹如达摩利斯之剑,一方面疫情导致全球技术供应链出现一定的停滞期,另一方面疫情助推中国物联网的渗透。2020年无人工厂、无人配送、无人零售、远程教学、远程医疗等“无接触经济”的爆发均离不开物联网技术的支撑。综合多方面的情况分析,前瞻认为未来5年中国物联网的发展将保持高速增长,到2026年市场规模超过6万亿元。
以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
一是智能化是未来的重要趋势之一。
1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。
2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。
二是产业互联网的发展必然会带动人工智能的发展。
1、互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业。
2、人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。
三是人工智能技术将成为职场人的必备技能之一。
1、随着智能体逐渐走进生产环境,未来职场人在工作过程中将会频繁的与大量的智能体进行交流和合作,这对于职场人提出了新的要求。
2、未来需要掌握人工智能的相关技术。从这个角度来看,未来掌握人工智能技术将成为一个必然的趋势,相关技能的教育市场也会迎来巨大的发展机会。
四是人工智能取代人力,对全球的经济产生影响
1、说到人工智能,大多数人都是比较期待的,当然也有少数人会怀着担忧的心态看到它,因为人工智能的发展,让我们看到了人工智能的高效和服从。
2、在未来,当人工智能的发展进入到一个全新的领域阶段,它是不是就能够取代现在一些行业所需要的人工劳动呢?如果是的话,那么将会有大面积的失业问题出现。
——预见2023:《2023年中国物联网产业全景图谱》(附市场规模、竞争格局和发展前景等)
行业主要上市公司:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)等
定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
产业发展前景:物联网将继续保持高速增长
1、发展前景:市场规模不断扩大,产业物联网占比逐渐上升
物联网是中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。中国以加快转变经济发展方式为主线,更加注重经济质量和人民生活水平的提高,采用包括物联网在内的新一代信息技术改造升级传统产业,提升传统产业的发展质量和效益,提高社会管理、公共服务和家居生活智能化水平。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。综合多方面的情况分析,前瞻认为未来6年中国物联网的发展将保持高速增长,到2027年市场规模超过7万亿元。
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、发展趋势:重点城市带动周边城市发展,分工协作格局将进一步显现
国内物联网产业已初步形成环渤海、长三角、珠三角,以及中西部地区等四大区域集聚发展的总体产业空间格局。其中,长三角地区产业规模位列四大区域的首位。未来中国物联网产业空间演变将呈现出三大趋势:
更多本行业研究分析详见前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。
1、物联网的定义:
物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
2、物联网的组成:
物联网大致可以分为以下四个层面,即:感知层、网络层、平台层以及应用层。具体如下:
(1)、感知识别层。
感知层是物联网整体架构的基础,是物理世界和信息世界融合的重要一环。在感知层,我们可以通过传感器感知物体本身以及周围的信息,让物体也具备了“开口说话,发布信息”的能力,比如声音传感器、压力传感器、光强传感器等。感知层负责为物联网采集和获取信息。
(2)、网络构建层。
网络层在整个物联网架构中起到承上启下的作用,它负责向上层传输感知信息和向下层传输命令。网络层把感知层采集而来的信息传输给物联云平台,也负责把物联云平台下达的指令传输给应用层,具有纽带作用。网络层主要是通过物联网、互联网以及移动通信网络等传输海量信息。
(3)、平台管理层。
平台层是物联网整体架构的核心,它主要解决数据如何存储、如何检索、如何使用以及数据安全与隐私保护等问题。平台管理层负责把感知层收集到的信息通过大数据、云计算等技术进行有效地整合和利用,为人们应用到具体领域提供科学有效的指导。
(4)、综合应用层。
物联网最终是要应用到各个行业中去,物体传输的信息在物联云平台处理后,挖掘出来的有价值的信息会被应用到实际生活和工作中,比如智慧物流、智慧医疗、食品安全、智慧园区等。
扩展资料:
物联网的功能主要有以下几点:
1、获取信息的功能。
信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。
2、传送信息的功能。
传送信息指的是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。
3、处理信息的功能。
处理信息指的是信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。
4、施效信息的功能。
施效信息指的是信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态。
参考资料来源:百度百科-物联网
随着信息化时代到来,地震勘探正向着智能化方向发展。各个企业、科研院在地震勘探研究和应用中,都加大了对人工智能技术(AI)地使用,通过智能化手段提高了勘探的效率和精度,取得了地球物理资源开发利用更大的成就。为了更好的研究和开发我们生存的家园——地球,产生了一门用物理测量和数学研究的学科,这就是地球物理学。地球物理学中通过地质样本进行直接研究的方法,称为地探。另外一种通过仪器进行地球观测的方法,称为物探。在物探方法中,包括了重力、磁法、电法、地震、放射性等多种方法。其中勘探石油天然气资源最有效的方法就是地震勘探。
地震勘探是用地下岩石d性差异来进行地球物理勘测的方法,通过激发人工地震,研究地震波在地下传播的规律,以查明地下地质的构造。
在国际国内地震勘探领域,随着AI技术飞速发展,大量AI+地震勘探的研究成果不断涌现。根据SEG最近几年对AI技术研究成果地统计,深度学习方法已经成为主流。其中卷积神经网络模型(CNN)的研究最多,占比60%以上,生成对抗网络模型(GAN)占比10%左右,循环神经网络模型(RNN)占比10%左右。其余的研究方法还包括机器学习的算法,如随机森林、字典学习等等。很多论文还会结合多种方法联合使用,达到更好的应用效果。
从应用领域来看,热门的研究领域包括了数据预处理、构造解释、储层识别等领域。
1数据预处理
数据预处理主要是实现地震道集的优化,包括了噪声压制、分辨率提高、缺失道恢复等。
有学者提出了深度残差网络、自编码卷积神经网络、深度卷积神经网络等进行了随机噪声压制。
还有学者通过建立多尺度信息相互弥补的网络模型,实现了地震信号的分辨率提高。
2构造解释
在构造解释领域的典型应用包括了断层识别、地层识别、边界圈定等方向。
在断层识别方向,伍新明等教授的团队取得了较好的成果。主要成果包括了:一是通过机器算法生成大量人工合成的地震断层训练标签。二是通过机器学习算法检测断层概率、断层倾角等属性信息。三是改进了神经网络算法,实现了精细化的断层识别。
在层位解释方向,有学者通过自编码的卷积神经网络模型,通过半监督的检测方法,实现了地震体层位的自动拾取。
3储层预测
在地层解释方向,有学者采用无监督学习地震特征和有监督学习标注地层相结合方式,训练了神经网络模型,在实际资料处理中取得了较好的效果。
地震相预测是储层预测的一个热门方向,其中主要方法是波形分类法。波形分类法是近年来机器学习在地球物理应用中的成熟方法,使用的模型包括了卷积神经网络( CNN)、循环神经网络( RNN)、概率神经网络( PNN)、深度神经网络( DNN)、 自编码器网络( AE)、生成对抗网络( GAN)、 K 近邻聚类( KNN)等。
波形分类法的主要原理是抽取地震剖面数据学习地震属性特征,再对地震属性进行聚类实现波形分类,最后对目标工区进行地震相的预测。现在也有使用深度神经网络模型(DNN、CNN、RNN、GAN等)直接进行波形特征学习,并应用于地震相分类的。
比如有学者使用卷积神经网络学习了波形特征,进行了河道、河滩等地震相分类。
地震反演是储层预测中的一项重要工作,在这个领域涵盖了反射系统反演、d性参数反演、物性参数反演、工程参数反演、岩石参数反演、全波形反演、地震初至旅行反演等众多研究方向,采用的方法包括了机器学习和深度学习各类流行的算法模型。
比如有学者采用级联和卷积神经网络在时间域角度反演了岩石物理参数,包括纵横波速度、密度、孔隙度、含水饱和度等。
岩石物理分析是储层预测中比较直接研究地质构造的一类方法,研究方向包括了对测井曲线预测和进行数字岩心的预测。
有学者运用三维卷积神经网络,通过扫描岩石标本图像预计孔隙度和d性参数,应用于砂岩切片预测。
虽然人工智能技术带来了很多革命性的变化,但是在应用过程中仍然存在一些局限性:
1数据缺乏统一性
目前地震勘探得到的数据类型众多,数据量也很大。但是没有建立一套标准的数据接口,缺乏数据统一管理的模式,造成人工智能模型的数据输入存在限制,无法自动化、规模化的训练模型,无法对网络模型进行持续的改进。
2模型处理过程可视化问题
网络模型存在黑箱问题,处理过程中的结果无法供研究人员掌握。还需要考虑将智能模型计算结果与地震勘探软件进行叠加使用,满足复杂图层、多次分析要求。
3高维度复杂数据处理问题
目前的人工智能模型对一维数字、二维等数据处理比较成熟。但是对三维以上的数据处理能力尚不成熟。在地震勘探工程中,存在大量的多维数据,比如地震数据体、油气存储属性数据等。一方面高维度数据造成模型构造复杂度上升,另一方面大规模数据量也会造成数据处理时间成指数倍上升。人工智能的数据处理难题,影响了地震勘探的精细化应用分析。
4面对不同场景的适用性问题
人工智能模型种类众多,在解决不同地震勘探场景时具有多解性。当使用不同的训练集数据,应用于不同的实际场景,可能会出现不同的实际效果。确立一套科学的场景应用模型设计,实现在特定训练场景和应用场景中得到稳定的效果输出,这是未来研究者需要努力的方向。
相关阅读:
如何在地震勘探研究更上一层楼?带你一起深度学习识别断层
怎样轻松入门地震勘探研究:先从地震数据处理开始
深度学习地震去噪实战:教你如何从0开启地震深度学习科研之路1、人工智能将重塑产业结构。在当前产业结构升级的大背景下,人工智能技术将起到非常积极的作用,一方面人工智能技术将逐步替代低附加值岗位,从而推动人力岗位升级,另一方面人工智能也将开辟出大量新的工作岗位,这个过程将逐步重塑产业结构。当前人工智能尚处在行业发展的初期,随着人工智能行业的不断发展,人工智能对于传统行业的影响将逐步得到体现。2、人工智能将改变传统的供需关系。随着大量的智能体逐渐走进生产和生活环境,整个社会的供需关系也将产生变化,围绕智能体也会产生一个巨大的价值空间,从而培育出一系列新的生态体系。供需关系的变化本身就存在创新和创业的机会,所以对于创业者来说,人工智能时代的发展机会依然非常多。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)