武汉启创数字不发工资

武汉启创数字不发工资,第1张

由WI-FI的不断发展,我们即将都会用上新的80211ax协议和比较安全稳定的WI-FI安全协议WPA3。在我们到底能弄明白WPA3究竟能带来哪些好处之前,有必要对之前WI-FI无线协议 历史 有个 历史 回顾,忆苦思甜才能真正知道有多甜,吃水不忘挖井人,只有知道前辈们为了WI-FI安全所做的那些努力我们才能知道任何一个系统安全保障是多么的不易。本文虫虫就给大家讲讲Wi-Fi协议发展简史以及关键的 历史 点

在上世纪90年代中后期,互联网伊始,通过任何一个机器都可以"嗅探"任何其他给定机器的流量,即使在有线网络上也是如此。当时的以太网主要是通过集线器而不是交换机相连,任何稍微懂点互联网协议的人都可以随时通过网络抓包浏览网络流量中传输的内容,从底层的网络包到应用层电子邮件的内容都一览无遗。

在世纪交替之际(2000年附近),有线以太网已经从集线器(甚至是旧的同轴电缆网)转到了交换机。集线器会将收到的每个数据包转发给连接到它的每台机器,所以基于此的网络嗅探非常简单。相比之下,交换机只会将数据包转发到它们所指定的MAC地址,因此当计算机B想要将数据包发送到路由器A时,交换机不会向计算机C上的用户提供网络包。这一点点的微妙变化使有线网络比以前更加值得信赖。当1997年发布最初的80211 Wi-Fi标准时,包括WEP-无线加密协议,它提供了与时下用户期望的有线网络具有相同的安全性期望,所以他的名字也是源于此。

WEP的原始版本需要一个10位数字或者26位的十六进制预共享密钥,比如0A3FBE839A类似的数字。由于十六进制位数可用字符有限制,只能0-9和A-F字母,所以和日常使用的可读字符比较差异很大,非常不易于阅读和使用,很容易出现故障。比如你使用一个个不在0-F范围的字母,就会报错。和大家预期的一样,WEP很快就被抛弃不用。尽管要求用户有效和准确地分享10或26位十六进制数字似乎非常不合理,但是在1997年确实是这样用的。
D-Link的DI-514 80211b是WEP路由器的一个例子。它是一个非常完美的路由器。

后续版本的WEP提供了对客户端和路由器都一致方式,自动将任意长度的人类可读密码hash散列化到10或26位十六进制代码。因此,尽管WEP的底层仍使用原始的40位或104位数字进行处理,但是至少不用人们使用阅读和分享这些难记的数字串。从数字到密码的转变开始,使得WEP使用量开始攀升。

虽然人们实际使用中WEP还挺好,但这个早期的安全协议仍然有很多问题。一方面,它故意使用了很弱的RC4加密,尽管可以手动设置加强的加密算法,仍然容易被同一网络的其他机器嗅探。由于所有流量都使用相同的PSK进行加密和解密,所以任何人都可以轻松截取你的流量,并且解密。
这还不是最可怕的,可怕的是WAP密码可以很容易被破解,基于Aircrack-Ng 破解套件可以在几分钟内就能破解任何的WEP网络。
WPA的最初实现采用了80211g WI-FI标准,该标准对WEP做了巨大地改进。 WPA从一开始就被设计为接受人性化的密码,但其改进远远不止于此。
WPA引入了TKIP,即Temporal Key Integrity Protocol临时密钥完整性协议。 TKIP主要两个主要用途。首先,它为每个每个发送的数据包创建一个新的128位密钥。这可以防止WEP网络在几分钟被攻破的窘境。TKIP还提供了比WEP简单循环冗余校验(CRC,Cyclic Redundancy Check)强得多的消息认证码。CRC通常可用于低可信度的数据验证,以减轻网络线路噪声的影响,但它有个天然缺陷,无法有效抵御针对性地攻击。

TKIP还使得不会自动将你的流量暴露给其他新加入Wi-Fi网络的人。WEP的静态预共享密钥意味任何人都可以完全清楚地接收其他人的流量。但是TKIP为每个传输的数据包使用了一个新的短暂密钥,所以其他人并不能使用这个密钥。连接到公共Wi-Fi网络的人,虽然大家都知道密码,但是各自用的数据加密密钥都不一样,你就无法直接浏览别人传输的网络包的内容。

但是TKIP也有其问题,并在2008年首次遭遇了中间人攻击(MITM,Man In The Middle)。安全研人员Martin Beck和Erik Tews发现了一种利用80211e QoS功能解密WPA/TKIP网络中短数据包的方法,该攻击方法也叫"Beck-Tews攻击"。攻击过程只需要12-15分钟,但这并不是最糟糕的,当时还相对有很少的网络实际上实施了80211e。

2009年,安全研究人员 Toshihiro Ohigashi和Masakatu Morii表了名为《有关Beck-Tews攻击的新变种》的论文,该论文披露了详细的攻击细节,该攻击可以攻击任何WPA/TKIP网络。
2004年,针对WEP和TKIP的已知的问题,电气和电子工程师协会(IEEE)创建了新的80211无线网络标准80211i扩展。拥有Wi-Fi商标的行业监管机构Wi-Fi Alliance则基于80211i扩展宣实现了WPA2。该版本的改进是用AES-CCMP代替TKIP用于非企业认证(企业通常使用RADIUS来为每个用于单独分配密码,这两个密码,可以避免大多数身份验证攻击问题)。
有一些些80211g路由器支持AES,但是真正大量的使用是从80211n路由器开始的,比如上图中的 Linksys WRT310n。

这里的字母汤很厚很热:AES是高级加密标准(the Advanced Encryption Standard),CCMP是计数器模式密码块链接消息认证码协议(the Counter Mode Cipher Block Chaining Message Authentication Code Protocol)。 AES-CCMP可以避免Beck-Tews及变种的中间人攻击。WPA2虽然支持AES-CCMP,但没有强制启用,为了兼容旧的非WPA2设备,很多用户仍然使用TKIP。

经管WPA2和AES-CCMP可以避免中间人工降,但是也并不是没有永久性地解决安全问题。2017年出现了的KRACK攻击像一般利箭刺穿了AES/CCMP的壁垒。
80211i预期到偶尔会丢失网络连接,并且为了加速重新连接,它允许断开连接的设备重新使用旧密钥重新连接。因此,精心伪装的侦听器可以捕获数据包并使用重放攻击来强制网络重复发送具有新随机数的相同已知块。这样攻击者可以,通过这些信息重建整个密钥串,从而实现完全网络访问。

KRACK攻击由于利用了80211i的漏洞,所以WPA2无法修复。虽然可以通过在密钥安装期间禁用EAPOL-Key帧重新传输等设置可以在很大程度上缓解攻击,但是这会导致下线设备回复重连的时间加长。不过,这是唯一可以防止KRACK攻击,提高安全性的方法。

在KRACK攻击公布后不久,Wi-Fi联盟于2018年1月推出了WPA3。WPA3通过将密钥预共享(PSK)替换为同等身份验证(SAE)来避免重放攻击。SAE是一种旨在强大而安全地识别对等设备的协议,它首次提出了适用于Wi-Fi网状网络的80211s标准。除了解决KRACK攻击之外,Wi-Fi联盟声称,IEEE 80211-2016中提到的SAE的实施将解决用户由于大意或者设置而导致的安全问题。SAE还解决了针对短密码设置的网络的(非暴力或字典)攻击。

WPA3认证还引入了利用NFC进行身份验证的能力。NFC或近场通信是一种极短距离无线通讯技术,用于通过将设备靠近验证设备而进行认证。如果WPA3路由器或接入点启用了NFC网络加入,你只需拿着支持NFC的手机或者互联网设备靠经路由器/接入点,就能通过认证,加入网络。虽然从某种意义上来说这是一种低安全性,任何可以利用手机轻轻靠就能上网。但是由于NFC会话无法被远程捕获,并且方便好用,无需记忆密码,而且可以基于入网设备进行审计和事后行为追踪,所以这是相对比较方便靠谱的方法,完美的权衡了安全性和易用性的要求。

WPA3还通过添加Perfect Forward Secrecy修补了Wi-Fi实施加密的另一个明显漏洞。对于WEP,WPA或WPA2,不知道Wi-Fi密码的攻击者可以记录他们所在范围内的所有内容,然后获得密钥后再解密。通过Perfect Forward Secrecy杜绝了预先录网络包的可能。即使你以后破解了网络,你先前捕获的包仍然不可解码。使用WPA3,即使较弱的>物联网的英文名称为"The Internet of Things” 。由该名称可见,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础之上的延伸和扩展的一种网络;第二,扩展到了任其用户端延伸和何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
EPC系统是一个非常先进的、综合性的和复杂的系统。其最终目标是为每一单品建立全球的、开放的标识标准。如图2.4所示,它主要由全球产品电子代码(EPC)体系、射频识别系统及信息网络系统三大部分组成[17]。

图24 EPC系统的构成图
(1)EPC编码标准
EPC编码是EPC系统的重要组成部分,它是对实体及实体的相关信息进行代码化,通过统一并规范化的编码建立全球通用的信息交换语言。
(2)EPC标签
EPC标签是装载了产品电子代码的射频标签,通常EPC标签是安装在被识别对象上,存储被识别对象相关信息。标签存储器中的信息可由读写器进行非接触读/写。
32 EPC系统特点
(1)开放的体系结构
EPC系统采用全球最大的公用的刀又TERNET网络系统。这就避免了系统的复杂性,同时也大大降低了系统的成本,并且还有利于系统的增值。梅特卡夫(Metcalfe)定律表明,一个网络大的价值是用户本系统是应该开放的结构体系远比复杂的多重结构更有价值。
(2)独立的平台和高度的互动性
EPC系统识别的对象是一个十分广泛的实体对象,因此,不可能有那一种技术适用所有的识别对象。同时,不同地区,不同国家的射频识别技术标准也不相同。所以开放的结构体系必须具有独立的平台和高度的交互 *** 作性。EPC系统网络建立在INTERNET网络系统上可以与INTERNET网络所有可能的组成部分协同工作
(3)灵活的可持续发展的体系
EPC系统是一个灵活的开放的可持续发展的体系,可在不替换原有体系的情况下就可以做到系统升级。整体的EPC网络 *** 作依赖于RFID系统和网络应用系统的介入,使产品信息有效的传播。安装在不同需求链环境的解读器可以读取标签中储存的产品数据。因此供应链数据可以通过网络及时地检查、更新或者交换信息。
33 EPC编码编码标准
EPC码是新一代与EAN/UPC码兼容的编码标准,在EPC系统中EPC编码与现行GTIN相结合,因而EPC并不是取代现行的条码标准,而是由现行的条码标准逐渐过渡到EPC标准或者是在未来的供应链中EPC和EAN.UCC系统共存。EPC中码段的分配是由EAN.UCC来管理的。在我国,EAN.UCC系统中GTIN编码是由中国物品编码中心负责分配和管理。同样,ANCC也即将启动EPC服务来满足国内企业使用EPC的需求。
EPC码是由一个版本号加上另外三段数据(依次为域名管理者、对象分类、序列号)组成的一组数字。其中版本号标识EPC的版本号,它使得EPC随后的码段可以有不同的长度;域名管理是描述与此EPC相关的生产厂商的信息。
第四章 物联网在家庭中应用
随着时代的发展,中国已经逐步进入了老龄化社会,以后我们社会面临的现状将是一对年轻的夫妻,在照看自己小孩的同时,还要照看2~6对老人,这就为全社会出了一个难题。每家都雇保姆,显然不现实;那么,只能通过科技的手段来解决这个问题了,靠提高家庭的生活品质、方便家庭与外界的信息交互、用传感节点感知家里发生的情况等,这就为家庭物联网的实现奠定了社会基础。
物联网的概念正大行其道,也使人们看到了社会未来的发展趋势,然而物联网大部分却停留在概念阶段,真正规模应用还有待时日。家庭区域相对狭小、需求比较明确,最有可能优先实现物联网的应用。它不只是现代家庭现实的需要(照看老人、孩童),更是人们日益增强的家庭安全
41家庭物联网应用领域
寒冷的冬季,供暖系统使北方城市家庭充满温暖,而当白天大部分人离家上班的时候,空空的房间仍温暖如春。我们需要一个智能化的供暖控制系统。在生产安全领域,在食品卫生领域,在工程控制领域,在城市管理领域,在人们日常生活的各个方面,甚至在人们的娱乐活动中,都需要建立随时能与物体沟通的智能系统。通过装置在各类物体上的电子标签(RFID),传感器、二维码等经过接口与无线网络相连,从而给物体赋予智能,可以实现人与物体的沟通和对话也可以实现物体与物体相互间的沟通和对话。在电度表上装上传感器,供电部门随时都可知道用户的用电情况,实现用电检查、电能质量监测、负荷管理、线损管理、需求侧管理等高效一体化管理,一年来降低电损。在电梯装上传感器,当电梯发生故障时,无需乘客报警、电梯管理部门会借助网络在第一时间得信息,以最快的速度去现场处理故障。
42发展历程
1999年,物联网的概念就已被提出,10年间,世界各国都在加紧研究。物联网的发展共分为四个阶段:第一个阶段是大型机、主机的联网,第二个阶段是台式机、笔记本与互联网相联,第三个阶段是手机等一些移动设备的互联,第四阶段是嵌入式互联网兴起阶段,更多与人们日常生活紧密相关的应用设备,包括洗衣机、冰箱、电视、微波炉等都将加入互联互通的行列,最终形成全球统一的“物联网”。
对于互联网来说,20世纪80年代是黄金时代,这段时间出了一个知名的人物——鲍勃•卡恩(BobKahn),他被人们称为互联网之父(被赋予同样称呼的人还有好几个)。在为互联网做出卓越贡献的同时,他也非常有远见的为另一个始于上世纪80年代的项目——分布式传感网(DistributedSensorNet,简称DSN)——做了奠基。在那个年代,传感器远比我手上的这个大得多,要用一辆卡车来拉。这么大的传感器作为一个个节点组织在一起,通过微波彼此相连,就组成了传感网。
庞大的传感器在体积方面跟不上人们对其功用上的期望,于是研究者们就开始思考能不能把它做得小一点、再小一点。于是,在上世纪90年代,“智能微尘”(SmartDust)这个很有意思的概念出现了,提出者是KrisPister,他是加州大学伯克利分校的教授。这一概念认为可以将计算和通讯集成在约1~2平方毫米的超微型传感器中,用以对周围环境的参数进行探测。其核心的成分是微电机系统(Micro-Electro-MechanicalSystem,简称MEMS;这个概念在当时引起非常大的轰动),该系统中可以集成很多和机械有关的传感器。
当时KrisPister这批人有一个幻想——在蒲公英上面悬挂一个传感芯片,蒲公英飞到哪里就探测哪里的信号,再把信号传递回来。虽然只是一个假想,但当时真有科学家信心百倍地投入其中,并且还把所需的数据算出来了。比如有空气动力学专家计算出了芯片应有的重量等等。在2001年,加州大学伯克利分校的实验室真做出了这种理想中的芯片雏形,比米粒还小,可谓“细如发丝,薄如蝉翼”。他们送给了我一个,当时我还精心包装了一下。可惜最近找不到了,特别遗憾。倘若芯片里面还有电留存的话,说不定我就能通过网络定位到它的“安身之所”了。
在这一时期,有三所高校和研究机构在传感器领域处于领军地位,一是加州大学伯克利分校(以KrisPister为代表,他们提出了“智能微尘”理论),另外两个是加州大学洛杉矶分校(他们提出了“微无线技术”)和施乐帕克研究中心(XeroxPARC)。施乐帕克研究中心的团队主要由我带领,我们做的是传感信息处理和“智能物质”(SmartMatter),希望能把计算、微电机系统放到物理世界中,与“智能微尘”也有非常紧密的联系。
自本世纪初以来,对于传感的研究越来越受到人们的重视,有很多学校和大公司的研发机构开始进行了类似的研究,并有许多新兴公司借此东风异军突起。将传感器连接成“网”或“系统”,就成了传感网。除了传感网以外,类似的概念也相继提出,比如“CyberPhysicalSystem”和“InternetofThings”(简称IOT)。相较而言,IOT的概念在提出的初期更接近于日常生活,比如常见的RFID(RadioFrequencyIdentification,射频识别)技术就是它的一部分。
关于传感网和物联网的历史,若从大的传感器开始算起,传感网诞生至今应有30年了;而若从微传感网(MicroWirelessSensorNetwork)来说,应该仅有15至20年:微传感网始于上世纪90年代,那个时期的人们刚刚提出“微电机系统”的概念,试图把传感器和计算机处理和通讯全部都集成在一个芯片上,即“智慧微尘”。
其实传感器的历史,归结起来就八个字——从大到小,以点到面。这八个字看似简单,但做起来却是困难重重——要想让传感器真正“飞入寻常世界中”,它必需在体积、造价、能耗等方面进行“瘦身”,这样它才真正能够进入到物理世界。
然而,造型的缩小并不是传感进入生活的唯一条件,还需要互联网技术的配合以实现从点到面的网际联系。就IP地址而言,物联网应采用IPv6(IPv4必然不够),它有128位两进制的IP网址数,这相当于给世界上的每个沙粒都赋予了一个 IP地址。唯有当所有的物体都有一个属于自己的IP的时候,物联网才能真正实现。总而言之,物联网的实现需要这两方面的相辅相成:一是利用微处理技术(micro-fabrication),提高集成度;其二是运用IP技术,以提供足够丰富的网址。
43面临的问题
国内智能家居市场存在很多问题。1、进入门槛较高,一般一次性投入要1、2万元,这就大大限制了中等收入以下人群的购买需求。2、功能华而不实,很多都是遥控个灯光、音响,需求跟投入不成比例。3、生搬硬套,将原来很多工业上使用的东西直接照搬到家庭里,缺少人性化,不能完全适合家居生活需要。4、很多智能家居企业缺少核心技术,东拼西凑,组成个系统就推广,导致成本增高、企业竞争力下降。
RFID超高频技术在我国的应用尚处于起步阶段,一些项目的应用只是试点,还没有得到广泛应用,也没有在供链上应用。比如,只在某一个仓库里应用,或只在生产线上应用。应该说,这些试点项目全
都属于闭环状态的应用,在供应链上串起来应用的案例国内还没有出现。
物联网发展潜力无限,但物联网的实现并不仅仅是技术方面的问题,建设物联网过程将涉及到许多规划、管理、协调、合作等方面的问题,还涉及标准和安全保护等方面的问题,这就需要有一系列相应的配套政策和规范的制订和完善。
首先是技术标准问题。标准是一种交流规则,关系着物联网物品间的沟通。各国存在不同的标准,因此需要加强国家之间的合作,以寻求一个能被普遍接受的标准。
其次是安全的问题。物联网中的物品间联系更紧密,物品和人也连接起来,使得信息采集和交换设备大量使用,数据泄密也成为了越来越严重的问题。如何实现大量的数据及用户隐私的保护,成为待解决的问题。
第三,协议问题。物联网是互联网的延伸,在物联网核心层面是基于TCP/IP,但在接入层面,协议类别五花八门,CPRS、短信、传感器、TD-SCDMA、有线等多种通道,物联网需要一个统一的协议基础。
第四,终端问题。物联网终端除具有本身功能外还拥有传感器和网络接入等功能,且不同行业需求各异议,如何满足终端产品的多样化需求,对运营商来说的一大挑战。
第五,地址问题。每个物品都需要在物联网中被寻址,就需要一个地址。物联网需要更多的IP地址,IPv4资源即将耗尽,那就需要IPv6来支撑。IPv4 向IPv6过渡是一个漫长的过程,因此物联网一旦使用IPv6地址,就必然会存在与IPv4兼容性问题。
第六,费用问题。目前物联网所需的芯片等组件的费用较高,若把所有物品都植入识别芯片花费自然不少,如何有效解决这一问题仍需考虑。
第七,规模化问题。规模化是运营商业绩的重要指标,终端的价格、产品多样性、行业应用的深度和广度都会地用户规模产生影响,如何实现规模化是具有待商讨的问题。
第八,商业模式问题。物联网在商业应用方面的业务模式还不是很明朗,商业模式问题值得更进一步探讨。
第九,产业链问题。物联网所需要的自动控制、信息传感、射频识别等上游技术和产业已成熟或基本成熟,而下游的应用也单体形式存在。物联网的发展需要产业链的共同努力,实现上下游产业的联动,跨专业的联动,从而带动整个产业链,共同推动物联网发展。
要建立一个有效的物联网,有两大难点必须解决:一是规模性,只有具备了规模,才能使物品的智能发挥作用;二是流动性,物品通常都不是静止的,而是处于运动的状态,必须保持物品在运动状态,甚至高速运动状态下都能随时实现对物品的监控和追踪。
实现物联网,首先必须在所有物品中嵌入电子标签等存储体,并需安装众多读取设备和庞大的信息处理系统,这必然导致大量的资金投入。因此,在成本尚未降至能普及的前提下,物联网的发展将受到限制。已有的事实均证明,在现阶段,物联网的技术效率并没有转化为规模的经济效率,目前的所谓物联网应用也没有一个在商业上获得了较大成功。例如,智能抄表系统能将电表的读数通过商用无线系统(如GSM短消息)传递到电力系统的数据中心,但电力系统仍没有规模使用这类技术,原因在于这类技术没有经济效率。
物联网的关键在于RFID、传感器、嵌入式软件及传输数据计算等领域,包括“云计算”、无线网络的扩容和优化等均是物联网普及需解决的问题。只有通过“云计算”技术的运用,才能使数以亿计的种类物品的实时动态管理变得可能。从目前国内产业发展水平而言,传感器产业人水平较低,高端产品为国外厂商垄断。

城轨系统中WLAN使用的通信协议有:
1、蓝牙低功耗(BLE);
2、WiFi,WiFi是另一种广泛用于物联网设备间通信的协议;
3、ZigBee,ZigBee是基于IEEE802154标准的短距离无线通信协议,其工作频率是24GHz,数据速率为250kbps;
4、Z-Wave,Z-Wave是低功耗射频通信协议,主要用于家庭自动化系统和电子设备,如灯控制器和传感器;
5、远程广域网,远程广域网(LoRaWAN)是一种通信协议,主要用于区域、国家或全球的由电池供电的远程无线物联网设备;
6、近场通信,近场通信(NFC)是一种简单且安全的协议,可以简化物联网设备之间的双向通信。

1、面向连接的:使用TCP协议通信的双方必须先建立连接,然后才能开始数据的读写,TCP连接是全双工的,即双方的数据读写可以通过一个连接进行。完成数据交换之后,通信双方都必须断开连接以释放资源。TCP协议的这种连接是一对一的,所以基于广播和多播(目标是多个主机地址)的应用程序不能使用TCP服。而无连接协议UDP则非常适合于广播和多播。
2、流式服务:TCP的字节流服务的表现形式就体现在,发送端执行的写 *** 作数和接收端执行的读 *** 作次数之间没有任何数量关系,当发送端应用程序连续执行多次写 *** 作的时,TCP模块先将这些数据放入TCP发送缓冲区中。当TCP模块真正开始发送数据的时候,发送缓冲区中这些等待发送的数据可能被封装成一个或多个TCP报文段发出。(下图3-1)
3、UPD的数据报服务:发送端应用程序每执行一次写 *** 作,UDP模块就将其封装成一个UDP数据报并发送之。接收端必须及时针对每一个UDP数据报执行读 *** 作(通过recvfrom系统调用),否则就会丢包(这经常发生在较慢的服务器上)。并且,如果没有指定足够的应用程序缓冲区来读取UDP数据,则UDP数据将被截断。

物联网平台为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑设备数据采集上云;向上提供云端API,指令数据通过API调用下发至设备端,实现远程控制。

物联网平台也提供了其他增值能力,如设备管理、规则引擎、数据分析、边缘计算等,为各类IoT场景和行业开发者赋能。

如下是共享单车基于物联网平台的解决方案。
物联网平台提供边缘计算能力,支持在离设备最近的位置构建边缘计算节点处理设备数据。

在断网或弱网情况下,边缘计算可缓存设备数据,网络恢复后,自动将数据同步至云端。

提供多种业务逻辑的开发和运行框架,包括场景联动、函数计算和流式计算,各框架均支持云端开发、动态部署。

边缘计算能力允许在最靠近设备的地方构建边缘计算节点,过滤清洗设备数据,并将处理后的数据上传至云平台。
物联网应用可广泛应用于:智能生活、智能工业、智能楼宇、环境保护、农业水利、能源监控等环境。计算平台主要涉及:

开发者使用设备接入SDK,将非标设备转换成标准物模型,就近接入网关,从而实现设备的管理和控制。

设备连接到网关后,网关可以实现设备数据的采集、流转、存储、分析和上报设备数据至云端,同时网关提供规则引擎、函数计算引擎,方便场景编排和业务扩展。

设备数据上传云端后,可以结合云功能,如大数据、AI学习等,通过标准API接口,实现更多功能和应用。

物联网 (IoT) 设备必须连接互联网。通过连接到互联网,设备就能相互协作,以及与后端服务协同工作。互联网的基础网络协议是 TCP/IP。MQTT(Message Queue Telemetry Transport,消息队列遥测传输) 是基于 TCP/IP 协议栈而构建的,已成为 IoT 通信的标准。

1、 泊位—— 公司目前拥有5个万吨级主泊位 、6个5000吨级内港池码头泊位,主码头枯水季节吃水可达-15米,最大靠泊能力为5—7万吨,设有门机5台,其中40吨3台,25吨2台。内港池岸线总长500米,港池宽130米,枯水季节最大吃水-5米,设有5台25吨门机,可保证5条3000吨级船驳同时作业 2、 堆场情况—— (1)拥有室内仓库2座总面积25万平方米,有效容量20万吨,可满足货主存储各类精细货物的需要,苫盖保管能力配套,有一整套管理严格、行之有效的货物交付、理货、保管制度,保证数字准确,保证货物质量。(2)拥有公共保税仓库、出口监管仓库各1座,总面积7992平方米,可为客户提供“一关三检”、货运代理等服务。(3)拥有室外堆场34万平方米,配备龙门吊20台,最大可装卸40吨级货物。移动电调4台,叉车8台,最大起重量25吨。其中散货堆场6万平方米,配备装载机4台。(4)惠龙港国际是上海期货交易所、上海大宗、上海钢之源电子盘,指定交割库,核定库容180万吨,是全国最大的钢材期货交割库。 3、 接卸能力 矿石煤炭类可达到装卸16万吨/天吨装水泥,吨装类装卸15万吨/天钢材类,单机装卸200吨/小时可承接重大件、设备吊装,目前已为中船重工,大通重工等一大批重大件吊装。 4、 加工配送业务惠龙港配备2条宽205m,厚3—16mm的开平加工生产线,1条53m宽的钢材预处理加工生产线和8条盘螺调直线。终端用户可以将港内库存钢材就地加工,加工后可由驻惠龙江苏联运有限公司直接配送到生产车间进行分段制造,节约仓库所占土地和加工转运成本。
我 1
做 3
问 5
答 1
推 9
广 9
关 6
键 9
词 5
不 0
在 2

3





欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12947282.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存