2、旋极信息(300324),最新股价384元,总市值6730亿:公司在互动平台表示,成都旋极星源信息技术有跟公司与平义哥半导体有限公司达成战略台作共识,并签害了战略合作协议,双方将携手差出基于旋极星源超低功耗NB0TRFP、平义哥超低功耗CPUP的整套低功耗物联网SOC平台解决方案。
3、飞利信(300287),最新股价380元,总市值5454亿:旗下MCU芯片核心指令集既是在RISC-V指令集上进行改进而成,且拥有完全自主知识产权。
:
上市的有关条件与具体要求如下:
1、主体资格:A股发行主体应是依法设立且合法存续的股份有限公司;经国务院批准,有限责任公司在依法变更为股份有限公司时,可以公开发行股票。
2、公司治理:发行人已经依法建立健全股东大会、董事会、监事会、独立董事、董事会秘书制度,相关机构和人员能够依法履行职责;发行人董事、监事和高级管理人员符合法律、行政法规和规章规定的任职资格。
3、独立性:应具有完整的业务体系和直接面向市场独立经营的能力;资产应当完整;人员、财务、机构以及业务必须独立。
4、同业竞争:与控股股东、实际控制人及其控制的其他企业间不得有同业竞争;募集资金投资项目实施后,也不会产生同业竞争。
5、关联交易(企业关联方之间的交易):与控股股东、实际控制人及其控制的其他企业间不得有显失公平的关联交易;应完整披露关联方关系并按重要性原则恰当披露关联交易,关联交易价格公允,不存在通过关联交易 *** 纵利润的情形。
6、财务要求:发行前3年的累计净利润超过3000万;发行前3年累计净经营性现金流超过5000万或累计营业收入超过3亿元;无形资产与净资产比例不超过20%;过去3年的财务报告中无虚假记载。
CPU又称中央处理器,作为计算机系统的运算和控制核心,是半导体产业技术最密集、最具战略价值的产品,是一个国家技术势力的象征。
目前CPU的市场基本被美国的两大公司垄断,分别是大哥Intel和小弟AMD,两家几乎占领了99%的市场份额。
目前Intel和AMD以X86指令集和微软共同建立了庞大的生态系统并且不对外开放,这样一来,中国队想要自己做CPU的空间不多了。
01 CPU定义
CPU在半导体行业中是人们常接触到的一种芯片,最常见的应用就是在电脑中,其中有名的有Intel的 i9-11980HK 和AMD的 R7-5800X 。
按照CPU种类来分类,可以分为服务器CPU、家用电脑CPU、嵌入式设备CPU和手机CPU,服务器CPU需要更出色的性能、稳定性和安全性,要求服务器365天开机运行,连续工作,一个服务器可以安装多个CPU;而家用电脑CPU性能要求相对较低,容量较小,不要求连续工作,一个电脑只能安装一个CPU;嵌入式设备和手机对CPU的性能要求相对更低。
按照CPU指令集架构来分类,CPU可以分为RISC和CISC。
CISC 即复杂指令系统计算机,物如其名,CISC是比较复杂的,指令系统比较丰富,有特定的指令来完成对应的功能,可以处理特殊任务。
RISC及精简指令集计算机,把精力集中在经常使用的指令上,对不常用的功能,通过组合指令来完成,实现简单高效的特点,一次RISC不能处理特殊任务。通俗来说就是经常用的功能简单化,不经常用的功能复杂化。
这其中CISC代表的指令集有X86,RISC代表的指令集有ARM、MIPS、RISC-V、Alpha、SPARS,除了这两种之外,还有我国自主研发的指令集DEC和LoongArch。
02 六大国产CPU
首先我们来了解一下什么是CPU的生态环境, CPU的生态环境就是一块CPU推出后,系统和软件对它的支持和优化有多少, 比如国产CPU龙芯就没有一个好的生态,不论是采用MIPS还是自主研发的LoongArch都不能支持Windows系统。
自主建立生态环境又难于上青天,而生态如果没有建立,软件商店就不会有软件(比如QQ在Linux中停更),这也是国产CPU发展最大的瓶颈之一。
目前国内有六大CPU设计厂商,他们是华为、飞腾、兆芯、申威、龙芯、海光(均未上市),他们分别以不同的方式参与CPU的设计。
CPU国产替代的故事得从Intel开始。
Intel趁着PC的东风迅速发展,建立了X86架构,标识了一套通用计算机指令集合,并且与微软一起在X86指令集上建立了庞大的生态。
目前的X86指令集不对外授权,只被英特尔和AMD所掌握,而X86又是PC、服务器领域做得最好的,别的指令集的生态环境远远抵不过X86,留给中国队的发展空间实属有限。
中国队CPU分为3个路线。
其一是由 龙芯 和 申威 代表的:自研指令集
龙芯最初采用的是MIPS精简指令集,制作通用CPU,主要产品是自主可控消费类例如服务器、台式机、嵌入式、航天器等领域。
申威最初采用的是Alpha精简指令集,主要应用在超级计算机和军事领域。
龙芯和申威都因为生态的原因,很难发展起来,尤其是龙芯,想要打入服务器和台式机市场必须有很好的生态。
龙芯因为MIPS的分崩离析,开始发展自己的指令集—— LoongArch ,它是完全有龙芯自主研发,可以兼容MIPS生态, 并且开始尝试用二进制翻译兼容ARM、X86处理器,龙芯的目标是在2025年消除指令集之间的壁垒,彻底搞定兼容问题。
申威也因为Alpha被收购,开始发展自主研发的指令集—— SW64 ,它是由Alpha改进而来,申威制作的神威·太湖之光超级计算机便采用SW64指令集,被称为“国之重器”,在国际上都有一定的地位,多项指标全球第一。
第二路线是由 华为 和 飞腾 代表的:ARM指令集授权
华为芯片“四大天王”麒麟、鲲鹏、巴龙、升腾中,除了巴龙以外,均采用ARM指令集授权来开发。这其中最著名的就是“麒麟”了,在手机领域一度领先,直至海外因畏惧华为的崛起,开始了制裁华为事件,就此“麒麟”短暂隐身。
飞腾也是国内目前使用ARM架构制作CPU的厂商之一,其技术不弱于高通,目前公司也被美国列入黑名单,其芯片制造环节同样被卡脖子,可能成为第二个华为。
除了华为和飞腾以外,国内以ARM架构制作芯片的厂商还有很多,例如贵州华芯通、展讯通信等。
第三路线是由 兆芯 和 海光 代表的:合资获取X86授权
兆芯的X86架构授权是源自于VIA公司将部分X86处理器相关技术、资料等IP产权以118亿美元价格卖给兆芯。兆芯基于X86的生态和技术,性能方面普遍高于龙芯,但还是不能和英特尔比肩。
海光的X86架构授权是通过和AMD合资公司来拥有AMD授权IP,但并不是完整的技术转让,而是阉割后的残缺版,所以性能上面和AMD锐龙、高通骁龙差一个档次。
03 RISC-V
RISC-V近些年流行的新型指令集,它是一种开源式指令集,对使用者免费开放,也是这种特性使它被众多专家认为是中国处理器产业的一次机会,而且可能是最后一次机会。
目前全球CPU的市场格局是以X86架构垄断PC、服务器行业;ARM架构垄断移动设备行业,这两家几乎涵盖了所有CPU市场需求。
X86架构归“Wintel”(英特尔+微软)所属,是一种封闭指令集,不对外授权, 简单说就是谁也别想用,就我自己能用 ;ARM架构属于可授权指令集+可授权设计, 简单说就是你用需要经过我同意并且收费,你想再它基础上设计还得再经过我同意并且再收费。
正因为如此,RISC-V作为开放式指令集,被中国队大力支持,看作救命稻草。
那RISC-V究竟有没有那么好呢?我们主要得看两方面: 一个是它的生态好不好,生态是决定指令集发展空间的最大因素;另一个就是它到底是不是彻头彻尾的免费,日后会不会再被卡脖子。
第一,RISC-V的生态怎么样。
RISC-V具有性能高、功率低、面积小、易于扩展等技术特点,最重要的是它的开源、免费的独特属性,为其带来众多合作商,影响力逐步扩大。
从2015年组织RISC-V基金会成立是的25个成员,到现在已经有超过300多个单位的加入,其中包括阿里、谷歌、华为、英伟达、高通、中科院、麻省理工等等。
日前,有知情人士表明,英特尔将以20亿美元收购RISC-V领域的重量级公司SiFive,这也表明了英特尔的态度。
虽然英特尔靠X86架构在PC、服务器领域无人能敌,但是移动设备一直是他的心病,ARM在移动设备领域是他无法抗衡的,而RISC-V的出现,给了机会。
但是看好归看好,ARM的垄断地位依旧很难撼动,RISC-V后续可能与X86联手对抗ARM,但更大的可能是打入嵌入式设备市场中,做物联网领域的“一哥”。
总体来说,不论是PC、服务器,还是移动设备,都很难被RISC-V介入,相反一些嵌入式设备比如空调、冰箱、扫地机器人、电动车等等发展环境更好。
第二,RISC-V是否永远免费。
RISC-V源于2010年,加州大学伯克利分校的一个研究团队研发,当时他们因为市场已存在的指令集相当复杂,且成本和门槛太高,所以建立了新的指令集。
“开源架构RISC-V将永久免费,成为人类共有财产。相较于X86和ARM架构的高门槛,开源架构RISC-V将带来芯片设计的革命”——RISC-V架构开发者之一Krste Asanovic博士。
这是RISC-V架构开发者的原话,表明该指令集是完全开源免费的,到目前为止他们也很好的履行了,甚至把基金会总部搬离美国,迁移至瑞士(永久中立国)以防止美国地方政策的限制。
尽管RISC-V从表现来看做得很优秀,但抽丝剥茧,终究还是有隐患在的。
实现RISC-V指令级架构的处理器内核有很多个不同的微架构实现,而微架构实际的模式是分不同类型的,其中有开放的、需授权的以及封闭的。
虽然基于RISC-V开发CPU不需要支付授权费用,但如果直接用RISC-V内核设计,也是需要支付授权费的。通俗来说就是你用我不需要收费,但是想在它的基础上设计得经过我同意,甚至收费(我们目前是全免费,但我有权利在以后收些钱)。
总结来说,目前全球的指令集呈现以X86、ARM、RISC-V三足鼎立的局势,RISC-V作为新时代的弄潮儿得到了各大厂商的认可,有发展的空间,但它不足以撼动其他两个指令集的地位,不过可以预料到的是,等RISC-V成长起来,仍然有可能对我国CPU发展卡脖子,我们需要保持隐患意识,在跟随洋人步伐的同时,发展自身CPU业务。
纵观国内厂商在电脑CPU领域,龙芯以自研为主,开发属于中国的指令集,目前已经可以满足一些党政领域以及机密工作的需求,但打入家用电脑领域仍需要提升CPU的生态和性能;服务器CPU中,申威在超算上小有成绩;华为近期也有消息称完成40nm去美化工作线投产,在明年更将攻破20nm的工作线,麒麟可能会重新归来;一些未上市公司如芯来 科技 、平头哥等也有在尝试RISC-V领域。
种种迹象都在证明,虽然我们起步慢了30年之久,但国产CPU一直在突破,路途艰辛却一路披荆斩,长夜漫漫,但黎明终将到来。
全文由各种资料查证,如有专业领域上的错误,希望可以抛砖引玉,有所探讨。
芯片全产业链图(绿底已经写完)
今天在后台回复『硬核干货』,主编送你一个 财经 知识锦囊。
(特别说明:文章中的数据和资料来自于公司财报、券商研报、行业报告、企业官网、百度百科等公开资料,本报告力求内容、观点客观公正,但不保证其准确性、完整性、及时性等。文章中的信息或观点不构成任何投资建议,投资人须对任何自主决定的投资行为负责,本人不对因使用本文内容所引发的直接或间接损失负任何责任。)
7月25日,阿里巴巴旗下半导体公司平头哥正式发布玄铁910(XuanTie910)RISC-V IP,着实让RISC-V火了一把。现在,RISC-V真的要上天了。Microchip的Dorian Johnson表示,目前Microchip准备将其采用RISC-V指令集架构(ISA)的FPGA处理器应用到太空中,目前正在进行抗辐射等测试环节。
“使用新的开放式RISC-V架构,FPGA电路可以更靠近远端测量源工作。”Johnson在Elektroniikkalehti的文章中解释道。 “它可以在有效载荷源上实现自动数据收集,状态监视和负载控制,从而为卫星的CPU系统释放资源,因为它不必再负责控制远程有效载荷单元。”
“作为RISC Foundation维护的标准开放式架构,RISC-V ISA在空间技术设计中提供了许多好处。一个好处是“冻结”指令集,这意味着写入RISC-V内核的任何软件将始终可以在任何RISC-V设备上运行。使得原始代码库可以在许多不同的软件中重复使用数十年,从而使维护旧应用程序变得更加容易。合作伙伴可以创建根据客户特定要求定制RISC-V软件内核,并在需要时实现RTL共享以监控安全关键型应用程序。”
“RISC-V处理器已经在用于航空航天应用的抗辐射FPGA中进行了测试,”Johnson说道。“包含RISC-V处理器的FPGA适用于每个有效载荷单元,根据LX7730混合信号电路发送的远程测量数据进行读取,测量和决策,并将有效载荷单元的状态信息报告给或特殊的非标准化协议。“
Microchip目前概念验证阶段采用的是六传感器测试,RISC-V软核在抗强化辐射的RTG4 FPGA中运行。通过SPI总线连接到LX7730遥感控制器。
当然,并不是第一个将开放指令集带入太空的技术:TechEdSat-1 cubeat采用OpenRISC处理器,于2012年10月部署到国际空间站中,Cobham Gaisler的LEON处理器则采用基于OpenSPARC的开源架构。
LEON是一款32位RISC处理器,支持SPARC V8指令集,由欧洲航天总局旗下的Gaisler Research开发、维护,目的是摆脱欧空局对美国航天级处理器的依赖。
美国军工航天领域芯片供应商美高森美(Microsemi)在2017年时曾宣布成为首家针对RISC-V设计提供全面软件工具链和知识产权(IP)内核的可编程逻辑器件(FPGA)供应商。其RV32IM RISC-V内核适用于美高森美IGLOO2 FPGA、Smart Fusion 2系统级芯片(SoC)FPGA或抗辐射RTG4 FPGA。此后的2018年初,Microchip宣布收购美高森美,从而获得了包括RISC-V在内的多项技术。
近日,据外媒披露,全球首款集成了RISC-V指令集的模拟AI芯片——Mythic AMP在美国奥斯汀问世。
这是一款单芯片模拟计算设备,并采用Mythic的模拟计算引擎,而不是利用传统的数字来创建处理器,以便于将内存集成到处理器中,耗电量比传统模拟处理器低 10 倍。
熟悉传统计算原理的都知道,在常规计算机中,数据会定期从 DRAM 内存传输到 CPU。
内存保存程序和数据。计算机中的处理器和内存是分开的,数据在两者之间移动。处理器无论速度有多快,在从内存中获取数据时都必须处于空闲状态,并且取决于传输速率——这就是所谓的冯诺依曼限制。因此,将计算和内存合并到单个设备中就成为了大家 探索 的解决方法,而模拟 AI 就消除了冯诺依曼瓶颈,从而显着提高了性能。
目前关于AI 芯片并没有一个严格的定义。比较宽泛的定义是面向人工智能应用的芯片都可以称为AI 芯片。
AI 芯片主要包括三类:
在AI应用还没有得到市场验证之前,通常使用已有的通用芯片进行并行加速计算,可以避免专门研发ASIC芯片的高投入和高风险。但是这类通用芯片设计初衷并非专门针对深度学习,因而存在性能、功耗等方面的局限性。随着人工智能应用规模持续扩大,这类问题日益突显,待深度学习算法稳定后,AI 芯片可采用 ASIC 设计方法进行全定制,使性能、功耗和面积等指标面向深度学习算法做到最优。
提高AI 芯片性能和能效的关键之一在于支持高效的数据访问。在传统冯·诺伊曼体系结构中,数据从处理单元外的存储器提取,处理完之后再写回存储器。在AI 芯片实现中,基于冯·诺伊曼体系结构,提供运算能力相对是比较简单易行的,但由于运算部件和存储部件存在速度差异,当运算能力达到一定程度,由于访问存储器的速度无法跟上运算部件消耗数据的速度,再增加运算部件也无法得到充分利用,即形成所谓的冯·诺伊曼“瓶颈”,或“内存墙”问题,是长期困扰计算机体系结构的难题。目前常见的方法是利用高速缓存(Cache)等层次化存储技术尽量缓解运算和存储的速度差异。
晶心科技N22/N25F/D25F/N45/D45系列。晶心科技股份有限公司于2005年成立于台湾新竹科学园区的硅导竹科研发中心,全力投入创新架构高效能/低功耗的32/64位嵌入式处理器及相对应系统芯片发展平台的设计与发展。N22内核应用于小型物联网及穿戴设备等入门级MCU,效能达同级别间最高的395Coremark/MHz,其高性能和精简设计,相当适合处理以高数据传输率运行中的协定封包。N25F内核适合浮点密集型的多元应用,例如声音处里、先进马达控制器、卫星导航、高精度传感器融合以及高阶智能电表等。45系列内核均采用有序的8级双发射超标量技术,N-系列支持RTOS的应用,D-系列则支持RISC-V的SIMD/DSP指令集(P扩展指令集草案)。
Arm在嵌入式装置处理器提供客制化指令集设计,或许也是因应近年来RISC-V开放架构设计处理器越来越受市场关注,甚至欧盟单位更计画借由RISC-V架构设计打造各类处理器产品,借此提升欧洲地区在半导体应用发展竞争力。
稍早于美国圣荷西举办的ArmTechCon2019活动中,Arm除了透露目前全球累积出货量已经超过1500亿组,同时由执行长SimonSegars再次强调计画在2023年前恢复上市,更宣布针对嵌入式装置处理器提供客制化指令集设计,同时也将以全新Mbed作业系统加快与合作伙伴在物联网应用成长,此外更宣布将与通用汽车、Toyota、DENSO、大陆集团、Bosch、恩智浦与NVIDIA在内厂商合作成立自驾车辆运算协会(AVCC),借此推动未来的自动驾驶技术发展。
而针对嵌入式装置处理器设计提供客制化指令集,意味合作伙伴将可在无需额外支付授权费用之下,即可由Arm协助进行客制化修改,借此在市场做出差异化发展,同时也因为是由Arm提供客制化设计服务,因此并不会有软体、指令集相容问题,并且建立在新版Armv8-M指令集架构之后设计,将能使用更多新技术应用。
在此之前,Arm其实已经提供合作伙伴半客制化的处理器设计方案,例如目前Qualm已经借此打造多款半客制化的处理器产品,同时也获得不少市场支持成效,甚至能在每年以更快效率推出新款处理器,并且加入全新技术应用。
不过,此次在嵌入式装置处理器提供客制化指令集设计,或许也是因应近年来RISC-V开放架构设计处理器越来越受市场关注,甚至欧盟单位更计画借由RISC-V架构设计打造各类处理器产品,借此提升欧洲地区在半导体应用发展竞争力。
因此为了维持本身市场优势,Arm也必须持续维持更多发展d性,借此吸引更多合作伙伴持续采用旗下设计方案,避免全面转向采用RISC-V架构设计发展。
除了宣布在嵌入式装置处理器提供客制化指令集设计,Arm在此次活动更宣布透过全新Mbed作业系统加快更多物联网应用成长,并且与亚德诺半导体(AnalogDevices)、赛普拉斯半导体(Cypress)、MaximIntegrated、新唐科技(Nuvoton)、恩智浦(NXP)、瑞萨电子(Renesas)、瑞昱半导体(Realtek)、三星(Samsung)、芯科科技(SiliconLabs),以及u-blox产品工作群在内合作伙伴维持深度整合,确保接下来的物联网应用成长动能。
另外,此次与通用汽车、Toyota、DENSO、大陆集团、Bosch、恩智浦与NVIDIA在内厂商合作成立自驾车辆运算协会,更计画进一步推动未来自驾车应用发展。
从2010年夏天开始,伯克利研究团队大约花了四年的时间,设计和开发了一套完整的新的指令集。这个新的指令集叫做RISC-V,指令集从2014年正式发布之初就受到多方质疑,到2017年印度政府表示将大力资助基于RISC-V的处理器项目,使RISC-V成为了印度的事实国家指令集。再到今年国内从国家政策层面对于RISC-V进行支持,上海成为国内第一个将RISC-V列入政府扶持对象的城市。IBM、NXP、西部数据、英伟达、高通、三星、谷歌、特斯拉、华为、中天微、中兴微、阿里、高云、中科院计算所等国内外150多家企业与科研机构的加入RISC-V阵营。经过短短几年时间,RISC-V不仅有政策的支持,企业和学术圈对这个开源指令集的关注度不断提高,甚至让Arm也感受到了压力。因为自RlSC-V 2010年在伯克利大学诞生以来,业界出现最多的一个声音就是,RISC-V可能改变现有的由Arm和Intel X86主导的处理器架构竞争格局,尤其将会对Arm在消费类、IOT等嵌入式市场造成冲击。
ARM与RISC-V的区别
ARM架构和RISC-V架构都源自1980年代的精简指令计算机RISC。两者最大的不同就在于其推崇的大道至简的技术风格和彻底开放的模式。ARM是一种封闭的指令集架构,众多只用ARM架构的厂商,只能根据自身需求,调整产品频率和功耗,不得改变原有设计,经过几十年的发展演变,CPU架构变得极为复杂和冗繁,ARM架构文档长达数千页,指令数目复杂,版本众多,彼此之间既不兼容,也不支持模块化,并且存在着高昂的专利和架构授权问题。反观RISC-V,在设计之初,就定位为是一种完全开源的架构,规避了计算机体系几十年发展的弯路,架构文档只有二百多页,基本指令数目仅40多条,同时一套指令集支持所有架构,模块化使得用户可根据需求自由定制,配置不同的指令子集。
未来ARM和RISC-V的竞争将会何去何从?
目前ARM占据了以移动设备为代表的处理器IP的绝大部分市场,而RISC-V则是后起之秀。那么,未来会何去何从呢?
ARM与RISC-V的竞争有点像上世纪末的Windows和Linux之争,ARM和RISC-V的未来竞争格局也可能类似。首先几乎可以肯定的是,在ARM的传统优势领域,即手机领域,RISC-V基本没有机会,因为手机经过十年迭代后不太会彻底改变处理器内核了,这也和目前Windows经过二十多年风雨仍然是PC市场 *** 作系统龙头老大一样。但是,在新兴的领域,RISC-V和ARM都处于同一起跑线上,而RISC-V凭着指令集开源等特性很有可能可以击败ARM,或者至少能够占据可观的市场份额。目前这样的新兴市场主要是物联网市场。物联网市场有长尾化的特性,拥有众多细分市场,同时对于功耗有很高的要求,因此对于可以针对不同应用灵活修改指令集和芯片架构设计的RISC-V有优势,相比之下使用ARM往往只能做一个标准化设计,很难实现差异化。此外,物联网市场对于成本较敏感,RISC-V免费授权的特点对于芯片厂商也很重要。在RISC-V基金会名单中,我们可以看到高通、联发科这样重点布局物联网的企业。而在目前很火的AI芯片市场,ARM和RISC-V则尚看不出明显的优劣。这是因为高性能AI芯片中无论是使用ARM还是RISC-V的核,主要都是作为控制器来使用,最主要的也是最核心的计算单元往往是电路设计师自行设计而不会使用IP;另一方面AI芯片的利润空间往往较大,因此RISC-V的免费的特点并没有带来特别大的优势。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)