物联网市场规模持续稳步增长
2017年以来,全球物联网市场规模持续稳步增长,跨界应用不断兴起。我国物联网数据规模及多样性持续扩大,行业生态体系逐步完善,细分领域创新成果不断涌现,产业技术和应用发展进入落地关键期。
据前瞻前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2013年全球物联网市场规模达398亿美元,同比增长21%,到了2017年全球物联网市场规模达到了798亿美元,同比增长14%。预计2018年全球物联网市场规模将突破1000亿美元,达到1036亿美元,同比增长30%。
物联网发展呈现新特点与趋势分析
1、全球物联网设备数量爆发式增长,物联网解决方案渐趋成熟。2017年以来,全球物联网设备规模、普及率和企业级应用项目的爆发式增长,物联网解决方案渐趋成熟。数据显示,2017年全球物联网设备数量强劲增长,达到84亿台,首次超过人口数量。全球物联网市场有望在十年内实现大规模普及,到2025年市场规模或将成长至39-111万亿美元。
2、中国物联网市场规模突破万亿,物联网云平台成为竞争核心领域
2017年,我国物联网市场逐步回归理性,进入实质性发展阶段,全年市场规模突破1万亿元,年复合增长率超过25%,其中物联网云平台成为竞争核心领域,预计2021年我国物联网平台支出将位居全球第一。具体来看,C端用户(个人用户)更加关注物联网设备带来的实际智能体验,B端用户(行业用户/企业用户)则更加关注物联网应用的投入产出比。
3、物联网细分领域热度出现分化,技术演进驱动应用产品向智能、便捷、低功耗方向发展
2017年以来,物联网在交通、物流、环保、医疗、安防、电力等领域逐渐得到规模化验证,“物联网+行业应用”的细分市场开始出现分化,智慧城市、工业物联网、车联网、智能家居成为四大主流细分市场。芯片、智能识别、传感器、区块链、边缘计算等物联网相关新技术的迭代演进,加快驱动物联网应用产品向智能、便捷、低功耗以及小型化方向发展。
4、中国物联网重点上市企业营收达48338亿元,同比增长207%,创近五年新高
2017年,我国沪深板块52家及港股板块11家重点物联网上市企业营业收入及增长率均创近五年新高,概念股交易趋于活跃,亏损面收窄,企业净利润总额波动增长,总体盈利情况出现好转。
5、无锡持续深化国家传感网创新示范区建设,累计建成、获得20多个物联网相关国家级品牌
2017-2018年,无锡持续强化应用试点示范,健全完善技术创新体系,物联网产业发展路线图进一步细化,与实体经济融合发展进程逐步加快,“一核两翼多元”产业格局凸显。截至2017年底,无锡物联网营业收入2437亿元,拥有物联网企业超过2000家,发明专利申请量2500多件,承接的物联网工程遍及全球60多个国家700多座城市,其中国家级重大应用示范工程21个,牵头制定国际标准“物联网参考架构”,正式掌握顶层架构标准主导权,已累计建成、获得20多个物联网相关国家级品牌,全球影响力稳步提升。
中国物联网行业生态体系日趋完善,但仍存在一些发展瓶颈。市场与产业协同不足,行业标准政出多门,高端产品研发能力有待提高,网络基础设施亟待全面升级,数据隐私和安全问题仍然突出等。
中国物联网产业应加大研发投入力度,提升原始创新能力;夯实物联网应用基础,推动企业转型升级;促进产业协同,加快开发消费端规模化应用产品;积极参与国际标准制定,加强标准互 *** 作研究;明晰安全防护思路,各有侧重分类实施。
随着全球经济的快速发展,使得物流成为一个新兴的综合性服务产业。物流产业规模庞大、涉及领域广,融合了运输业、仓储业、货代业和信息业等,在服务商流、保障生产和方便生活等方面起着重要的作用。近年来,物流产业得到了高度重视,所有的物资资料、生产核心高端产品都需要物流业来支撑,物流产业得到了飞速发展。物流体系的不断完善,行业运行的日益成熟和规范使得其产业地位逐步上升。
但随着国内外物流量的逐年增长,市场需求的不断增加,物流业的存在的问题逐渐显露出来,物流成本居高不下,信息化和自动化程度低等,都影响和制约着物流业的发展。当下互联网特别是移动互联网发展迅猛,随着互联网政策的出台,各行各业迎来了一个发展的新契机。
以互联网为驱动,鼓励产业创新、促进跨界融合是我国经济和社会的发展的新方向。互联网物流时代已经到来,加快物流的信息化步伐,用互联网思维和现代化技术改变传统的运作模式,是未来物流业发展的必经之路。
现代信息技术的发展,为物流信息化提供了坚实的基础,没有物流的信息化,关于物流(的)现代化的任何设想都不可能实现。马货邦一个专业的物流信息服务平台,运用现代信息和传感等技术(对采集到的信息建模并输出用户决策模板),基于物联网大数据的智慧物流将是现代物流的发展方向。
通过对大数据的深度挖掘,对物流路线制定、运力调配进行优化,从而进一步实现降低成本、提升效率、即时服务等目标。通过应用物联网技术和完善的配送网络,构建面向生产企业、流通企业和消费者的社会化共同配送体系;将自动化、可视化、可控化、智能化、系统化、网络化、电子化的发展成果运用到物流系统。在物联网大数据主导的新经济时代,物流行业将在各产业的创新驱动和价值链重构上占据更为核心的位置。
最重要的是,在互联网+的时代,物流不能仅仅成为配送的工具,物流业与金融业、制造业的多元融合将成为互联网+时代物流业发展的方向。互联网+物流真正想改变的是物流环节中信息不对等以及利益链条过长的问题,直接打通供给方与需求方之间的渠道,改变旧供应链中的落后环节。
然而互联网+物流并不仅仅是物流环节、物流信息的变革,最终目的是完成商品流通体系的的转型,让物流社区更加智能化、智慧化、便捷化,最终构筑出透明、高效、信息对等的现代物流体系,完善的商品流通系统。
物联网的应用领域涉及到方方面面,在工业、农业、环境、交通、物流、安保等基础设施领域的应用,有效的推动了这些方面的智能化发展,使得有限的资源更加合理的使用分配,从而提高了行业效率、效益。
在家居、医疗健康、教育、金融与服务业、旅游业等与生活息息相关的领域的应用,从服务范围、服务方式到服务的质量等方面都有了极大的改进,大大的提高了人们的生活质量;
在涉及国防军事领域方面,虽然还处在研究探索阶段,但物联网应用带来的影响也不可小觑,大到卫星、导d、飞机、潜艇等装备系统,小到单兵作战装备,物联网技术的嵌入有效提升了军事智能化、信息化、精准化,极大提升了军事战斗力,是未来军事变革的关键。
一、智能交通
物联网技术在道路交通方面的应用比较成熟。随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;
高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。
社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。
该系统可以兼容手机模式和射频识别模式,通过手机端APP软件可以实现及时了解车位信息、车位位置,提前做好预定并实现交费等等 *** 作,很大程度上解决了“停车难、难停车”的问题。
二、智能家居
智能家居就是物联网在家庭中的基础应用,随着宽带业务的普及,智能家居产品涉及到方方面面。 家中无人,可利用手机等产品客户端远程 *** 作智能空调,调节室温,甚者还可以学习用户的使用习惯,从而实现全自动的温控 *** 作,使用户在炎炎夏季回家就能享受到冰爽带来的惬意;
通过客户端实现智能灯泡的开关、调控灯泡的亮度和颜色等等; 插座内置Wifi,可实现遥控插座定时通断电流,甚者可以监测设备用电情况,生成用电图表让你对用电情况一目了然,安排资源使用及开支预算;
智能体重秤,监测运动效果。内置可以监测血压、脂肪量的先进传感器,内定程序根据身体状态提出健康建议; 智能牙刷与客户端相连,供刷牙时间、刷牙位置提醒,可根据刷牙的数据生产图表,口腔的健康状况;
智能摄像头、窗户传感器、智能门铃、烟雾探测器、智能报警器等都是家庭不可少的安全监控设备,你及时出门在外,以在任意时间、地方查看家中任何一角的实时状况,任何安全隐患。看似繁琐的种种家居生活因为物联网变得更加轻松、美好。
三、公共安全
近年来全球气候异常情况频发,灾害的突发性和危害性进一步加大,互联网可以实时监测环境的不安全性情况,提前预防、实时预警、及时采取应对措施,降低灾害对人类生命财产的威胁。
美国布法罗大学早在 2013 年就提出研究深海互联网项目,通过特殊处理的感应装置置于深海处,分析水下相关情况,海洋污染的防治、海底资源的探测、甚至对海啸也可以提供更加可靠的预警。该项目在当地湖水中进行试验,获得成功,为进一步扩大使用范围提供了基础。
利用物联网技术可以智能感知大气、土壤、森林、水资源等方面各指标数据,对于改善人类生活环境发挥巨大作用。
趋势和特征
物联网近年来的主要显着趋势是由互联网连接和控制的设备的爆炸性增长。物联网技术的广泛应用意味着从一个设备到另一个设备的具体细节可能大不相同,但大多数人都具有基本特征。
物联网为将物理世界更直接地集成到基于计算机的系统中创造了机会,从而提高了效率、经济效益和减少了人力。
物联网设备的数量在 2017 年同比增长 31% 至 84 亿,预计到 2020 年将有 300 亿台。物联网的全球市场价值预计为到 2020 年达到 71 万亿美元。
环境智能和自主控制并不是物联网最初概念的一部分。环境智能和自主控制也不一定需要互联网结构。然而,(英特尔等公司)的研究发生了转变,将物联网和自主控制的概念结合起来,初步成果朝着这个方向发展,将物体视为自主物联网的驱动力。
在这种情况下,一种有前途的方法是深度强化学习,其中大多数物联网系统提供动态和交互式环境。训练代理(即 IoT 设备)在这样的环境中表现得更聪明,无法通过传统的机器学习算法(例如监督学习)来解决。
通过强化学习方法,学习代理可以感知环境状态(例如,感知家庭温度),执行 *** 作(例如,打开或关闭暖通空调)并通过最大化其长期获得的累积奖励来学习。
可以在三个级别提供物联网智能:物联网设备、边缘/雾节点和云计算。每个级别对智能控制和决策的需求取决于物联网应用的时间敏感性。例如,自动驾驶汽车的摄像头需要进行实时障碍物检测以避免发生事故。
通过将数据从车辆传输到云实例并将预测返回给车辆,这种快速决策是不可能的。相反,所有 *** 作都应在车辆本地执行。集成高级机器学习算法,包括深度学习物联网设备是一个活跃的研究领域,使智能对象更接近现实。
此外,通过分析物联网数据、提取隐藏信息和预测控制决策,可以从物联网部署中获得最大价值。物联网领域使用了各种各样的机器学习技术,从回归、支持向量机和随机森林等传统方法到卷积神经网络、LSTM和变分自动编码器等高级方法。
未来,物联网可能是一个非确定性和开放的网络,其中自动组织或智能的实体(Web 服务、SOA组件)和虚拟对象(化身)将可互 *** 作并能够独立行动(追求自己的目标)目标或共享目标)取决于上下文、情况或环境。
通过上下文信息的收集和推理以及对象检测环境变化(影响传感器的故障)并引入合适的缓解措施的能力的自主行为构成了一个主要的研究趋势,显然需要为物联网技术提供可信度。
市场上的现代物联网产品和解决方案使用各种不同的技术来支持这种上下文感知自动化,但需要更复杂的智能形式,以允许在真实环境中部署传感器单元和智能网络物理系统。
以上内容参考 百度百科-物联网
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)