数据处理与分析的步骤是怎么样

数据处理与分析的步骤是怎么样,第1张

数据处理与分析分为五步:

第一步:确定客户的数据需求

比较典型的场景是我们需要针对企业的数据进行分析,比如公司通常会有销售数据、用户数据、运营数据、产品生产数据……需要从这些数据里获得哪些有用的信息,对策略的制定进行指导呢?又比如需要做的是一份市场调研或者行业分析,那么需要知道获得关于这个行业的哪些信息。

第二步:根据客户需求进行数据采集

采集来自网络爬虫、结构化数据、本地数据、物联网设备、人工录入五个数据源的数据,为客户提供定制化数据采集。目的是根据客户的需求,定制数据采集,构建单一数据源。

第三步:数据预处理

现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据分析,或分析结果差强人意。数据预处理有多种方法:数据清理,数据集成,数据变换,数据归约等。把这些影响分析的数据处理好,才能获得更加精确地分析结果。

第四步:数据分析与建模

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据模型是对信息系统中客观事物及其联系的数据描述,它是复杂的数据关系之间的一个整体逻辑结构图。数据模型不但提供了整个组织藉以收集数据的基础,它还与组织中其他模型一起,精确恰当地记录业务需求,并支持信息系统不断地发展和完善,以满足不断变化的业务需求。

第五步:数据可视化及数据报告的撰写

分析结果最直接的结果是统计量的描述和统计量的展示。数据分析报告不仅是分析结果的直接呈现,还是对相关情况的一个全面的认识。

可以使用多种方法来存储物联网设备上报的JSON数据。您可以使用关系型数据库(如MySQL)或NoSQL数据库(如MongoDB)来存储JSON数据。您也可以使用文件系统来存储JSON数据,将JSON数据存储在文本文件或二进制文件中。此外,您还可以使用云存储服务(如Amazon S3)来存储JSON数据。

时序数据与截面数据能解决多重共线性  请参考下面时序数据库白皮书。

思极有容数据库

时序数据库技术白皮书

北京中电普华信息技术有限公司

2020年4月

目  录

1 大数据时代的挑战 1

2 产品特点 1

3 系统结构 2

4 存储结构 4

5 数据分区、水平扩展 6

6 高可靠系统 7

7 STable:多表聚合 9

8 数据模型 10

9 实时流式计算 11

10 便捷的安装、部署、维护 12

11 更多亮点 13

12 参数指标 13

13 应用场景 14

1 大数据时代的挑战

随着移动互联网的普及,数据通讯成本的急剧下降,以及各种低成本的传感技术和智能设备的出现,除传统的手机、计算机在实时采集数据之外,手环、共享单车、出租车、智能电表、环境监测设备、电梯、大型设备、工业生产线等也都在源源不断的产生海量的实时数据并发往云端。这些海量数据是企业宝贵的财富,能够帮助企业实时监控业务或设备的运行情况,生成各种维度的报表,而且通过大数据分析和机器学习,对业务进行预测和预警,能够帮助企业进行科学决策、节约成本并创造新的价值。

仔细研究发现,所有机器、设备、传感器、以及交易系统所产生的数据都是时序的,而且很多还带有位置信息。这些数据具有明显的特征,1: 数据是时序的,一定带有时间戳;2:数据是结构化的;3: 数据极少有更新或删除 *** 作;4:无需传统数据库的事务处理;5:相对互联网应用,写多读少;6:用户关注的是一段时间的趋势,而不是某一特点时间点的值;7: 数据是有保留期限的;8:数据的查询分析一定是基于时间段和地理区域的;9:除存储查询外,往往还需要各种统计和实时计算 *** 作;10:数据量巨大,一天采集的数据就可以超过100亿条。

看似简单的事情,但由于数据记录条数巨大,导致数据的实时写入成为瓶颈,查询分析极为缓慢,成为新的技术挑战。传统的关系型数据库或NoSQL数据库以及流式计算引擎由于没有充分利用这些数据的特点,性能提升极为有限,只能依靠集群技术,投入更多的计算资源和存储资源来处理,企业运营维护成本急剧上升。

2 产品特点

思极有容时序数据库正是普华公司面对这一高速增长的物联网大数据市场和技术挑战推出的创新性的大数据处理产品,它不依赖任何第三方软件,也不是优化或包装了一个开源的数据库或流式计算产品,而是在吸取众多传统关系型数据库、NoSQL数据库、流式计算引擎、消息队列等软件的优点之后自主开发的产品,在时序空间大数据处理上,有着自己独到的优势。

· 10倍以上的性能提升:定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。

· 硬件或云服务成本降至1/5:由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10。

· 全栈时序数据处理引擎:将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/HDFS等软件,大幅降低应用开发和维护的复杂度成本。

· 强大的分析功能:无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。临时查询可通过Shell, Python, R, Matlab随时进行。

· 与第三方工具无缝连接:不用一行代码,即可与Telegraf, Grafana, Matlab, R等工具集成。后续将支持MQTT, OPC等工具, 与BI工具也能够无缝连接。

· 零运维成本、零学习成本:安装、集群一秒搞定,无需分库分表,实时备份。支持标准SQL语句,支持JDBC, RESTful连接, 支持Python/Java/C/C++/Go等开发语言, 与MySQL相似,零学习成本。

采用思极有容时序数据库,可将典型的物联网、车联网、工业互联网大数据平台的整体成本降至现有的1/5。同样的硬件资源,思极有容时序数据库能将系统处理能力和容量增加五倍以上。

3 系统结构

思极有容时序数据库是基于硬件、软件系统不可靠、一定会有故障的假设进行设计的,是基于任何单台计算机都无足够能力处理海量数据的假设进行设计的,因此思极有容时序数据库从研发的第一天起,就是按照分布式高可靠架构进行设计的,是完全去中心化的。思极有容时序数据库整个系统结构如下图所示,下面对一些基本概念进行介绍。

物理节点:集群里的任何一台物理机器(dnode),根据其具体的CPU、内存、存储和其它物理资源,思极有容时序数据库将自动配置多个虚拟节点。

虚拟数据节点:存储具体的时序数据,所有针对时序数据的插入和查询 *** 作,都在虚拟数据节点上进行(图例中用V标明)。位于不同物理机器上的虚拟数据节点可以组成一个虚拟数据节点组(如图例中dnode0中的V0, dnode1中的V1, dnode6中的V2组成了一个组),虚拟节点组里的虚拟节点的数据以异步的方式进行同步,并实现数据的最终一致性,以保证一份数据在多台物理机器上有拷贝,而且即使一台物理机器宕机,总有位于其他物理机器上的虚拟节点能处理数据请求,从而保证系统运行的高可靠性。

虚拟管理节点:负责所有节点运行状态的采集、节点的负载均衡,以及所有Meta Data的管理,包括用户、数据库、表的管理(图例中用M标明)。当应用需要插入或查询一张表时,如果不知道这张表位于哪个数据节点,应用会连接管理节点来获取该信息。Meta Data的管理也需要有高可靠的保证,系统采用Master-Slave的机制,容许多到5个虚拟管理节点组成一个虚拟管理节点集群(如图例中的M0, M1, M2)。这个虚拟管理节点集群的创建是完全自动的,无需任何人工干预,应用也无需知道虚拟管理节点具体在哪台物理机器上运行。

集群对外服务IP:整个系统可以由多台甚至数万台服务器组成,但对于应用而言,只需要提供整个集群中任何一台或两台服务器的IP地址即可。 集群将根据应用的请求,自动的将请求转发到相应的一个甚至多个节点进行处理,包括聚合、计算 *** 作等。这些复杂的分发和路由对应用是完全透明的。

4 存储结构

为提高压缩和查询效率,思极有容时序数据库采用列式存储。与众多时序数据库不同的是,思极有容时序数据库基于时序数据的特点,将每一个采集点的数据作为数据库中的一张独立的表来存储。这样对于一个采集点的数据而言,无论在内存还是硬盘上,数据点在介质上是连续存放的,这样大幅减少随机读取 *** 作,减少IO *** 作次数,数量级的提升读取和查询效率。而且由于不同数据采集设备产生数据的过程完全独立,每个设备只产生属于自己的数据,一张表也就只有一个写入者。这样每个表就可以采用无锁方式来写,写入速度就能大幅提升。同时,对于一个数据采集点而言,其产生的数据是时序的,因此写的 *** 作可用追加的方式实现,进一步大幅提高数据写入速度。

数据具体写如流程如图所示:

写入数据时,先将数据点写进Commit日志,然后转发给同一虚拟节点组里的其他节点,再按列写入分配的内存块。当内存块的剩余空间达到一定临界值或设定的commit时间时, 内存块的数据将写入硬盘。内存块是固定大小(如16K)的, 但依据系统内存的大小,每个采集点可以分配一个到多个内存块,采取LRU策略进行管理。在一个内存块里,数据是连续存放的,但块与块是不连续的,因此思极有容时序数据库为每一个表在内存里建立有块的索引,以方便写入和查询。

数据写入硬盘是以添加日志的方式进行的,以求大幅提高落盘的速度。为避免合并 *** 作,每个采集点(表)的数据也是按块存储,在一个块内,数据点是按列连续存放的,但块与块之间可以不是连续的。思极有容时序数据库对每张表会维护一索引,保存每个数据块在文件中的偏移量,起始时间、数据点数、压缩算法等信息。每个数据文件仅仅保存固定一段时间的数据(比如一周,可以配置),因此一个表的数据会分布在多个数据文件中。查询时,根据给定的时间段,思极有容时序数据库将计算出查找的数据会在哪个数据文件,然后读取。这样大幅减少了硬盘 *** 作次数。多个数据文件的设计还有利于数据同步、数据恢复、数据自动删除 *** 作,更有利于数据按照新旧程度在不同物理介质上存储,比如最新的数据存放在SSD盘上,最老的数据存放在大容量但慢速的硬盘上。通过这样的设计,思极有容时序数据库将硬盘的随机读取几乎降为零,从而大幅提升写入和查询效率,让思极有容时序数据库在很廉价的存储设备上也有超强的性能。

为减少文件个数,一个虚拟节点内的所有表在同一时间段的数据都是存储在同一个数据文件里,而不是一张表一个数据文件。但是对于一个数据节点,每个虚拟节点都会有自己独立的数据文件。

5 数据分区、水平扩展

为处理每日高达数亿条的海量数据,数据必须在多个节点存放。在思极有容时序数据库里,数据是按照每个采集点(表)来存放的。一张表(一个采集点)的数据,即使每秒产生一百个字节的数据量,一年也才3G的数据量,压缩后,往往还不到300M,因此在思极有容时序数据库里,一个表的数据是不跨节点存储的,以便于单张表的快速高效的插入、查询和计算。

为更好的数据分区,思极有容时序数据库采用了虚拟数据节点的设计。一个虚拟数据节点包含多个表,表的数量可以配置。根据其计算和存储资源,一个物理节点将被划分为多个虚拟数据节点。虚拟数据节点的设计带来几大优势:

1)更好的支持硬件异构环境,资源多的服务器可以创建更多的虚拟节点;

2)恢复一个宕机的节点,可以让众多的其他节点参与进来,大大加快速度;

3)如果撤掉一个数据节点,该节点上的虚拟节点将被相当均匀的迁移到其他节点上去;

4)新增一个数据节点,负载过热的节点的上的部分虚拟节点将被整体迁移过来。这一切让负载更加均衡,让数据同步变得更加高效。

与传统的数据库相似,用户可以创建多个数据库,每个库里面,可以创建多个表。一个库可以横跨多个虚拟数据节点,但一个虚拟数据节点仅仅属于一个数据库。当用户添加一个表时,管理节点将查看已经分配的虚拟节点里是否还有空位,如果有,就将该表分配到这虚拟节点。如果这个库的所有虚拟节点都没有空位,管理节点将根据负载均衡的策略(随机、轮询等)来分配一个新的虚拟节点给该库,然后将该表分配到新的虚拟节点里。由于一台物理主机有多个虚拟数据节点,这种策略能保证负载均匀分布。

管理节点负责整个系统的负载均衡,包括虚拟数据节点的增加、删除、迁移、合并与拆分。管理节点并不保存每个采集点采集的数据,只是管理虚拟节点,即使宕机,也不会影响现有各虚拟节点的数据插入和查询 *** 作。各个采集点或应用从管理节点获取分配的虚拟数据节点信息后,然后直接与虚拟数据节点通讯,直接将数据插入数据库,对于查询 *** 作也是如此。因此,系统容量以及吞吐率与虚拟数据节点的个数成正比,整个系统是水平扩展的

6 高可靠系统

为保证数据节点的高可靠性,思极有容时序数据库引入了虚拟数据节点组的概念,并采用异步的方式进行数据同步。一个虚拟节点组由处于不同物理主机上的虚拟数据节点组成,虚拟数据节点个数就是数据冗余的个数(Replication Factor,一般大于2)。在一个虚拟节点组里,各个虚拟数据节点通过心跳包实时知道对方的状态。如果一个虚拟数据节点收到数据写入的请求,该请求会被立即转发给其他虚拟数据节点,然后在本地存储处理。当应用连接思极有容时序数据库系统时,对于要 *** 作的任何一张表,系统会给应用提供该表所属的虚拟数据节点组里各个虚拟节点的IP地址(如果replication factor为3,就会有3个IP地址),如果链接其中一个失败或者 *** 作失败,应用会尝试第二个、第三个,只有所有节点失败才会返回失败。这样保证虚拟数据节点组里任何一台机器宕机,都不会影响对外的服务。这些复杂的重新连接流程都被思极有容时序数据库 Driver包装隐藏起来,应用开发者无需写程序来实现。

为保证效率,思极有容时序数据库采取异步方式实现多个副本之间的实时数据同步,采取的是最终一致性,而不是强一致。当一台主机重启时,每个虚拟数据节点都会检查自己数据的版本是否与其他虚拟节点一致,如果版本不一致,需要同步后才能进入对外服务状态。在运行过程中,由于各种原因,数据仍然可以失去同步,这种不同步会在收到转发的写入请求时被发现,一旦被发现,版本低的虚拟数据节点将马上停止对外服务,进入同步流程,同步完后,才会重新恢复对外服务。同步过程中,高版本的节点还可以正常的对外提供服务。

管理节点负责存储Meta数据,同时根据每个数据节点状态来负责负载均衡,因此也要保证其高可靠性。多个虚拟管理节点组成一个虚拟管理节点组,因为Meta数据可以被多个应用同时更新,因此思极有容时序数据库采用的是Master-Slave模式实现虚拟管理节点的数据同步。写的 *** 作,只有Slave节点写入成功后,Master节点才会返回成功,从而保证数据的强一致性。如果Master节点宕机,系统有机制保证其中一个Slave会立即被选举为Master, 从而保证系统写 *** 作的高可靠性。

由于Meta数据量并不大,Meta数据虽然需持久化存储,但将其完全保存在内存,以保证查询 *** 作的高效。在应用侧,为避免每次数据 *** 作都访问管理节点,思极有容时序数据库 Driver将必要的Meta数据都会缓存在本地,只有当需要的Meta数据不存在或失效的情况下,才会访问管理节点,这样大大提高系统性能。

管理节点在集群中存在,但对于应用和系统管理员而言,是完全透明的。整个系统会自动在物理节点上创建虚拟管理节点以及虚拟管理节点组。

7 STable:多表聚合

各个数据采集点的时钟是很难同步的,为保证其时序,而且为保证单一采集点的数据在存储介质上的连续性,思极有容时序数据库要求每个数据采集点单独建表,这样能极大提高数据的插入速度以及查询速度,但是这将导致系统表的数量猛增,让应用对表的维护以及聚合、统计 *** 作难度加大。为降低应用的开发难度,思极有容时序数据库引入了STable超级表的概念。

STable是表的集合,包含多张表,而且这个集合里每张表的Schema是一样的。同一类型的采集设备可创建一个STable。与表一样,包含Schema,但还包含标签信息。Schema定义了表的每列数据的属性,如温度、压力等,而标签信息是静态的,属于Meta Data,如采集设备的型号、位置等。思极有容时序数据库扩展了标准SQL的table的定义,创建时,除指定Schema外,还可以带关键词tags来指定有哪些标签。如:

create table m1(ts timestamp, pressure int, rpm int) tags (model binary(8), color binary(8))

上述SQL创建了一个STable m1, 带有标签model和标签color。为某一个具体的采集点创建表时,可以指定其所属的STable以及标签的值,比如:

create table t1 using m1 tags (‘apple’, ‘red’)

上述SQL以STable m1为模板,创建了一张表t1,这张表的Schema就是m1的Schema,但标签model设为apple,标签color设为red。插入数据时,仍然按照正常的方式进行插入。但查询时,除传统的表的查询外,还可以基于标签对STable进行各种聚合查询或统计。如:

select avg(pressue) from m1 where model=’apple’ interval(5m) group by color

上面这个SQL语句表示将标签model值为apple的所有采集点的记录的每5分钟的平均值计算出来,并按照标签color进行分组。

对于STable的查询 *** 作,完全与正常的表一样。但一个定义的STable可以包含多张表(多个数据采集点),应用可通过指定标签的过滤条件,对一个STable下的全部或部分表进行聚合或统计 *** 作,这样大大简化应用的开发。其具体流程如下图所示:

1) 、应用将一个查询条件发往系统;

2) 、Driver将查询的过滤条件发往Meta Node(管理节点);

3) 、管理节点将符合查询过滤条件的表的列表发回Driver(包含每个表对应的数据节点的IP地址);

4) 、这些返回的表可能分布在多个数据节点,Driver将计算的请求发往相应的多个数据节点;

5) 、每个数据节点完成相应的聚合计算,将结果返回给Driver;

6) 、Driver将多个数据节点返回的结果做最后的聚合,将其返回给应用。

8 数据模型

思极有容时序数据库采用的仍然是传统的关系型数据库的模型。用户需要根据应用场景,创建一到多个库,然后在每个库里创建多张表,创建表时需要定义Schema。对于同一类型的采集点,为便于聚合统计 *** 作,可以先定义超级表STable,然后再定义表。

不同的采集点往往具有不同的数据特征,比如有的采集点数据采集频率高,有的数据保留时长较长,有的采集数据需要3份备份,而有的数据一份备份即可,有的采集点一条记录很大,而有的采集点的记录仅仅16个字节,很小。为让各种场景下思极有容时序数据库都能最大效率的工作,思极有容时序数据库建议将不同数据特征的表创建在不同的库里。创建一个库时,除SQL标准的选项外,应用还可以指定保留时长、数据备份的份数、cache大小、是否压缩等多种参数。

思极有容时序数据库对库的数量、STable的数量以及表的数量没有做任何限制,而且其多少不会对性能产生影响,应用按照自己的场景创建即可。

9 实时流式计算

在存储的原始数据上,思极有容时序数据库可以做各种计算,目前支持的主要 *** 作包括:

· Avg:以每个采样时间范围内的value的平均值作为结果

· Dev:以每个采样时间范围内的value的标准差作为结果

· Count:以每个采样时间范围内的点的数目作为结果

· First:以每个采样时间范围内的第一个value作为结果

· Last:以每个采样时间范围内的最后一个value作为结果

· LeastSquares:对每个采样时间范围内的value进行最小二乘法的拟合

· Max:以每个采样时间范围内的value的最大值作为结果

· Min:以每个采样时间范围内的value的最小值作为结果

· Percentile:每个采样时间范围内的value的第p百分位数作为结果。

· Sum:以每个采样时间范围内的value的总和作为结果

· Diff:以每两个相邻的value的差值作为结果

· Div:以每个value除以一个除数作为结果

· Scale:以每个value乘以一个倍数作为结果

· 基于多个采集点数据的四则运算表达式

思极有容时序数据库还可对一个或多个数据流进行实时聚合、统计等计算,并将计算出的衍生数据当做新的数据保存进思极有容时序数据库,以便后续的 *** 作。实时计算与聚合查询很类似,只是后台定时进行,并自动滑动计算窗口的起始点。工作方式与其他流式计算引擎的Sliding Window相似。

实时计算可以通过一个简单的创建表的 *** 作来实现。如:

create table d1 as select avg (pressure) from t1 interval (60s) sliding(10s)

上述SQL表示将表t1里字段pressure每10秒钟(每次滑动的时间间隔)将过去的60秒钟(聚合计算的时间间隔)的数据平均值计算出来并写入表d1。计算出的衍生数据可以与其他原始数据或计算出的衍生数据进行再次计算。

10 便捷的安装、部署、维护

思极有容时序数据库是在Linux上开发的,任何Linux系统都可以运行,而且不依赖任何第三方软件,也不是在某个开源项目上包装出来的产品。获得安装包并解压后,只需执行安装脚本就一切搞定,极其简单。

安装后,会在安装的机器上自动创建虚拟数据节点和管理节点,开发者就可以使用了,能满足一般性的需求。但如果数据量大,就需要将软件安装到多台主机。这时也只需要在每台机器配置好Master IP, 系统管理员打开思极有容时序数据库Shell, 将新添加的主机添加进系统即可。如果要撤销一个物理节点,登录思极有容时序数据库 Shell, 将其删除即可,极其简单。传统数据库所需要的数据分区、数据迁移等等都一概不存在。

因为数据是自动同步到多个节点的,系统管理员不用担心数据的丢失,也不用制定备份和数据恢复策略,一切全自动进行。

如果软件需要升级,只要在思极有容时序数据库Shell里将新版本上传即可。管理节点将挨个把每个节点的软件进行升级,而且整个系统的服务将不停止,服务不受任何影响。如果要更换设备,只需将其拔除,安装上软件后,将新设备重新插入即可。换言之,思极有容时序数据库完全支持在线升级以及硬件的热插拔,从而保证服务的724的不间断运行。

开发人员需要做的是定义表的结构,根据具体场景,配置好各种参数,让系统性能达到最优。系统管理员只需要关注与硬件相关的报警信息,对于经常出问题的服务器或硬盘,进行更换而已。使用思极有容时序数据库, 整个系统的运维工作变得极为简单,将大大降低运营成本。

11 更多亮点

订阅模式:与标准的数据库不同,思极有容时序数据库还提供一种订阅模式。应用程序可以订阅数据库某张表的内容,一旦该表有新的记录,应用将立即得到通知。同一个表可以被多个应用订阅。与流行的消息中间件Kafka一样,订阅采取的是pull而不是push模式。Kafka的publish *** 作由数据库插入 *** 作代替。由于思极有容时序数据库具有极高的插入速度, 通过采用订阅模式,思极有容时序数据库本身也可以作为一个消息队列中间件来使用。

异步插入:为避免网络延迟带来的性能下降,更好的提高数据插入速度,思极有容时序数据库还提供一组API让应用异步插入数据。当应用调用插入API时,将立即得到反馈,等记录成功插入后,思极有容时序数据库将调用应用提供的回调函数通知应用。采用异步插入,性能将大幅提高。

Nagle算法:时序数据应用场景里,每条记录一般都很小,很多不到20字节,因此整个系统处理的是大量的小数据包。为了更进一步提高性能,减少网络IO次数,思极有容时序数据库采用了类似TCP协议的Naggle算法,客户端将缓存插入请求,只有记录的大小超过一定的大小或者缓存时间超过100毫秒,被缓存的插入请求才会被发往系统。对于时间要求很高的应用,该功能可以关闭。

12 参数指标

· 支持数据类型:tinyint, smallint, int, bigint, float, double, binary

· 单记录最大长度:4096字节

· 最大记录条数:仅受存储空间限制

· 最大表的个数:仅受节点个数限制

· 最大数据备份数:5份

· 单节点插入速度:3万条/秒(单核,16字节每记录,每次一条,无同步备份)

· 单节点查询速度:2000万条/秒(单核,16字节每记录,全内存)

· 更多指标将陆续提供

13 应用场景

思极有容时序数据库作为一个基础性的软件,应用范围及其广泛,原则上,所有使用机器、设备、传感器采集数据的地方都可以用上。一些典型场景罗列如下:

· 公共安全:上网记录、通话记录、个体追踪、区间筛选

· 电力行业:智能电表、电网、发电设备的集中监测

· 通讯行业:话费详单、用户行为、基站/通讯设备监测

· 金融行业:交易记录、存取记录、ATM、POS机监测

· 出行工具:火车/汽车/出租/飞机/自行车的实时监测

· 交通行业:实时路况,路口流量监测,卡口数据

· 石油石化:油井、运输管线、运输车队的实时监测

· 互联网:服务器/应用监测、用户访问日志、广告点击日志

· 物流行业:车辆、集装箱的追踪监测

· 环境监测:天气、空气、水文、地质环境等监测

· 物联网:电梯、锅炉、机械、水表、气表等各种联网设备

· 军工行业:各种军事装备的数据采集、存储

· 制造业:生产过程管控,流程数据、供应链数据采集与分析

网页链接 技术白皮书网页链接请单击查看!

大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。

大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

随着云时代的来临,大数据也吸引了越来越多的关注。分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

扩展资料:

大数据的三个层面:

1、理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

2、技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

3、实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

参考资料来源:百度百科-大数据

1、上海市大数据股份有限公司(简称“上海大数据股份”),是经上海市人民政府批准成立的国有控股混合所有制企业。

致力于成为智慧城市建设的主力军、国内大数据应用领域的领军企业和全球领先的公共大数据管理和价值挖掘解决方案提供商,满足政府对公共数据治理和提升城市管理及公共服务水平的要求,构建公共大数据与商业数据服务、以及政企数据融合的桥梁,促进社会经济发展。

2、辉略(上海)大数据科技有限公司,目前在中国交通(城市智能信号灯优化模型与平台,交通预算决策系统模型等)、环境(PM25污染检测和治理)、医疗(医院WIFI定位模型,病历匹配模型等)、汽车(用户购买转化率模型)等领域进行大数据项目运营与模型开发。

3、成都市大数据股份有限公司成立于2013年,作为成都市实施国家大数据发展战略的载体,2018年完成股份制改革并挂牌新三板,成都产业集团全资持股,主要涉及数据运营、投资并购、信息技术三大业务方向。

扩展资料:

大数据发展的一些趋势:

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了d性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

参考资料来源:百度百科-大数据

参考资料来源:上海市大数据股份有限公司官网-公司简介

参考资料来源:辉略(上海)大数据科技有限公司-关于我们

大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、Value(价值)、真实性(Veracity)。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取: 关系数据库、NOSQL、SQL等。基础架构: 云存储、分布式文件存储等。数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)模型预测 :预测模型、机器学习、建模仿真。结果呈现: 云计算、标签云、关系图等。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和 *** 作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

SOM销售运营管理系统(SalesOperationManagementSystem,简称SOM)。
SOM销售运营管理系统,利用互联网、物联网、大数据应用技术首倡研发,集成智能化、电子化、信息化等科技,
向企业在产品展示促销、无限裂变传播、分销及支付、大数据分析等商业运作重要节点提供业务支持的一套智能软硬件工具。
SOM销售运营管理系统是网站负载均衡(LoadBalance)、Redis集群、消息队列(MQ)、WebSocket协议实现全双工(full-duplex)通信等多技术在企业管理系统上的综合应用。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12962914.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存