物联网如何颠覆我们的生活

物联网如何颠覆我们的生活,第1张

很多人在思考,物联网到底是乌托邦还是真正的未来 随着越来越多的对象加入,数以百计的设备正在相连,大量数据都可以不用人类的命令自己传输到云端,这是一个非常大的转变,将改变我们的生活方式!

从健身设备、到冰箱、智能恒温器、微芯片路灯,所有的数据都可以不用我们的命令自己传输到云端,这是一个非常大的转变,将改变我们的生活方式。

芯片

在许多复杂的处理器、设备上添加一个RFID的芯片就可以让数据自动上传,这样带来的影响不管是好的还是坏的,都是非常强大的!

比如街上的路灯,有了芯片和连接组成的计算网络,一段路上哪个坏了很快就会知道,每个灯泡能用多久也会统计,甚至还可以根据有人没人自动节能。 ARM的CTO Mike Muller表示“如果每个停车位都有一个单片机,你就可以知道每一个车位是否是空的;如果每个码头都用一个单片机,渔夫就知道哪里可以停靠。”而这对于 有些人来说是巨大的商机,比如车位在“一位难抢”的时候你就可以竞价拍卖,打造一个相关App,成为物联网的一员。

Google首席布道官Vint Cerf 表示“我希望传感器网络广泛应用在家中,这些用两节AA电池的传感器寿命可持续一年以上;体积不大却可以监控温度、湿度、光线等数据”。此外,这些小小的 传感器以后都是一个个节点,它们自己形成一个网络,然后把信息通过通过网络发送到各个目标。到了年底的时候你就会有各种真实数据:供暖、通风的,空调如何 工作的……然后这些数据可以帮我们制定一个总系统———调控家庭的总系统。

大数据,大想法

数据上传的想法很好,可是当很多数据都需要上传的时候,有效性就是个大问题,这时我们就需要大数据了,那些逻辑算法可以创造商机也可以毁灭我们的生活,就看你怎么利用了。

ARM的 Muller表示,“每个人都专注大数据的时候,我会专注小数据,我还是继续关注我的那个小停车场,然后把它变成一个商业App。我自己的私人数据我会分享给健身教练,但我还是不希望他把它卖给人寿保险公司。”

数据的应用

一个温度计的数据可以用在许多地方,比如在家里可以感应是不是有盗贼进来,在酒窖里面如果气温波动,你可以提醒管道工应该降温或者升温了。

物联网的价值在于你可以处理大量数据并得出结论,而且越快越有效。比如家里的冰箱,如果冰箱里的每个东西都有一个RFID芯片,你在办公室的时候看 到一个菜谱你就知道该再买些什么今晚才能吃上菜谱里的东西,或者你买面的时候手机会收到一条短信告诉你应该再买点番茄酱。而日本人更恐怖,生病的时候还会 把近期的菜谱也上传给医生。

有选择地连接

很多人认为我们不应该急着把芯片和标签放在每一个物体上。恒温器和烟雾报警器公司Nest也承认有些数据并不值得收集。连接作为一个技术,可以改变一个产品、一个体验,但必须是有选择的,比如Nest恒温器就不需要把手机上的连接都复制过来,那样是没有意义的。

真正的物联网世界

数据本身没有好与坏,就看人们怎么利用它,物联网可以让我们的生活环境更安全、更高效、更有趣;反过来也可以让我们的一举一动被监控。以后我们将在这些有利的或者不利的情景中,走向真正的物联网世界。

以上由物联传媒转载,如有侵权联系删除

爱的番茄公司不好进。爱的番茄公司面试共有五轮,需要职业素质过硬的人才能通过面试。爱的番茄公司一般经营项目是:计算机软件、信息系统软件的技术开发、销售;信息系统设计、集成、运行维护;信息技术咨询;网络游戏技术开发;集成电路设计、研发;大数据技术开发;区块链的技术开发;数字积分系统的技术开发;人工智能技术开发;供应链与物联网技术开发;经营进出口业务;计算机软件、信息系统软件的开发、销售;信息系统设计、集成、运行维护;信息技术咨询;集成电路设计、研发(以上法律、行政法规、国务院决定禁止的项目除外,限制的项目须取得许可后方可经营),许可经营项目是:演出经纪业务;经营性互联网信息服务业务;电信业务经营;广播电视节目制作;文艺表演。

物联网简单的说就是物物相连的网络,通过物联网能够构建出一个万物互联的世界,而万物互联的世界必然会带来万物智能,从这个角度来看,物联网的发展空间还是非常广阔的。

物联网通常分为四个层次,分别是设备、网络、平台和应用。设备往往是物联网设计的第一步,不同的设备具备不同的功能,比如大量的传感器设备能够获取各种环境参数,对于一些工业生产环境来说,这些传感器还是非常重要的。传感器设备往往需要通过网关把数据发送到物联网平台,物联网平台根据传感器发回来的数据进行针对性的分析和判断,以便于决策是否进行相应的调整,而这正是大数据和人工智能所要关心的事情。从这个角度来看,物联网、大数据和人工智能的关系是非常密切的。

当前互联网正在从消费互联网向产业互联网发展,产业互联网需要综合采用物联网、大数据、云计算、人工智能等技术来赋能传统行业。物联网是产业互联网相关技术的基础,因为没有物联网就没有大数据,更谈不上智能化,所以物联网建设通常是产业互联网建设的排头兵。从这个角度来看,未来学习物联网相关技术是不错的选择,会有众多的发展机会。

物联网平台的解决方案是比较复杂的,目前物联网平台的研发依然处在未完全成熟的阶段,大量的技术标准还有待建立和完善,相信随着5G标准的落地,会进一步促进物联网平台标准化的建设。

什么是物联网,发展趋势怎样。学习物联网有前途吗?去年我应邀参加了上海物联网培训会,认识了物联网,并与我们陕西杨凌祥荷牌有机富硒农业专业研发有机富硒农业番茄,黄瓜,甜椒,马铃薯,红薯,猕猴桃,葡萄,苹果与上海合其家物联网公司董事长林总进行现场演讲与沟通。互联网是由美国制定的技术标准,而物联网是由中国制定技术标准的。通过物联网学习,认识了物联网公司各界朋友,今后物联网区块链将是我国重奌发展的方向,万物相连,物联网是未来信息技术发展的方向。也是信息技术一场革命。物联网是我国信息技术的发展方向。

VR技术:“现实”装入“虚拟”当中
VR技术在过去的20年里悄悄都潜伏在实验室里面,而2014年VR技术第一次迸发出无穷想象力。3月16日Facebook宣布20亿美元收购Oculus公司,后者正是一家沉浸式虚拟现实技术(VR)的领先公司。这20亿美元买的就是“计算设备和娱乐的未来”。Oculus最著名的就是推出了头戴式显示器Oculus Rift。这款产品利用内置的陀螺仪和显示屏能够打造出真正的虚拟显示场景,把“虚拟”贯穿到视觉、听觉、触觉、动觉当中,替代了“现实”。
如果我们仔细回想一下计算机过去50年里的发展趋势就不难想象VR技术的巨大想象空间。早年因为电脑笨重又大很难是个人的,不便于使用,然后台式机出现了,我们进入了个人可以直接在书桌上与计算机互动的时代。之后,笔记本电脑,我们可以随身携带计算机。今天我们将计算机装进了自己的口袋。按照这种发展模式走下去,计算机会与我们的身体越来越亲密。这意味着未来计算机可能戴在我们头上,然后用眼睛去跟它互动。VR技术实际上就是这种解决方式的先行者。
在过去的2014年,Oculus的发展牵动人心,首批1000个面向开发者的Oculus Rift DK2原型机早早就被抢购一空,市场上一机难求。而分布在全球各地狂热的开发者不知疲倦的让Oculus Rift变得更好玩,在Oculus相关论坛里每天都会有不同的Mod出现供大家测试。在CES 2014上Virtuix Omni还推出了配合Oculus Rift的跑步机来玩
《战地 4》游戏。如果你看过相关视频,你一定会在结尾处大吼一声:这才是游戏的最终形态!
2014年是VR技术大放异彩的元年,在近期的百度BIG Talk大会上,斯坦福大学虚拟互动实验室创始人Jeremy Bailenson说虚拟现实技术很快将会到来。也许未来我们的电脑将会消失,VR将会承载新的使命。
看“脸”时代:图像搜索大数据
你想知道虾和番茄能不能一起吃,于是你输入文字百度了一下,有了答案。而如果你手上有一张名画照片想知道作者怎么办?相信很大一部分人都会束手无策,因为这是一张。
相比语言搜索功能图像搜索被誉为是下一个重要的互联网入口,这源于一个不可逆转的现实——人们从外界获取信息,其中90%来自于视觉。当有东西无法用语言传递、表达时,你第一个想到的就是靠图像、影像。你想想看,当你在街上看到一件别人身上的衣服很好看,你想自己上网搜搜看哪里能买到,在不知道品牌型号的情况下,你要怎么给一个机器解释你的所看所感?就算你形容能力无敌了,但你有心思花那么多时间在组织搜索语言上吗?所以机器还要更加的智能,不但能理解一句话,还要可以直接分析你看到的图像和片段,你总是想要简单的对吧。
搜索就是目前火热的CBIR技术,这个92年由Kato教授提出的理论距今已经20年。CBIR的基础原理是系统对用户输入的图像进行分析并分类统一建模, 然后根据各种图像模型提取图像特征存入特征库,然后寻找符合相关条件的结果进行反馈。目前Google、Bing、百度三大搜索引擎均具备相关技术。其中Google搜索从Googlelabs一个项目演化而成,目前支持上传搜索和URL地址检索。而微软旗下的Bing则只支持基础的关键字图像匹配,精确度算法还有待提高。其他类似TinyEy等创业型图像搜索引擎脱胎于大学实验室,而曾经火过一段时间的GozoPa已经低调关闭B2C转型B2B业务。
小公司在做需要大数据的工程总显得捉襟见肘。再举个国内的反例,淘宝在12年推出过类似图像搜索的功能,不过随后运营不佳关闭。目前中国具备做好图像搜索能力的就只有百度,14年8月手机百度正式更新到55版,新版本新增的拍照搜索,被业界定义为图像搜索的20版本,在目前大多数用户还在扫描二维码、提前设定场景等OCR功能的拍照产品当中,手机百度是全球首款支持任意实物进行拍照搜索的产品。不过相信在未来,图像搜索会随着VR技术的成熟变等更大众普及,前景不可估量。
语音技术:能说的,就不用动手
如果说搜索解决了机器对的“理解”,那么语音技术就是解决了人与机器“交流”的问题。语音技术从IBM的一个小工具软件到今天已经有了十来年历史。而随着3G/4G带动的移动互联网市场兴起,语音识别成为有希望挑战传统搜索引擎的下一个产品,最近四年是语音技术发展最快的黄金期。
从技术角度来讲,语音识别主要流程为“语音提取——声纹转化——分词——语义识别”的过程,在后三步都需要借鉴到庞大的数据库,需要大投入长时间的研究,技术资金门槛较高。而其中的分词,尤其是中文分词,需要海量的数据样本做分析。而目前语音市场分为三大派系:
1:国企、大学院校研发背景的传统语音厂商(科大讯飞、捷通华声)。
2:互联网巨头厂商(百度、阿里、腾讯)
3:小的创业公司例如云之声、思必驰等。
这些厂商均有各自擅长的领域,其中科大讯飞在军用、行业级当中应用颇广。而百度为首的互联网厂商则在民用商业化方面捷足先登,创业公司则更加专注于细分市场。从目前来看科大讯飞目前在识别行业处于领头羊地位,产品适用范围广技术底蕴强,目前的军用、企业级使用较多,值得一提的是科大讯飞在技术专利方面也可以与国外语音巨头Nuance一拼。
不过,从消费者层面来讲好的语音识别系统很大程度上依靠经验,专利和算法什么的并没有多重要。语音识别这两年并没有着力于传统路线,而是向上发展为神经网络(你可以理解为每台服务器就是大脑的一个神经元),也就是语义识别,这里面涉及的就是人工智能和深度学习。如果说科大讯飞国内地位类似国外的Nuance,那么百度就是国外的Google。类似Google近两年来频繁挖语音牛人一样,百度邀请了吴恩达加盟,担任百度的首席科学家,负责百度研究院,他的研究领域就是机器学习和人工智能,研究重点是深度学习(deep learning)。深度学习就是神经网络当中非常重要的一个环节。
对于移动时代的搜索引擎来说,语音的重要性巨大,一旦这个环节落后未来可能直接被淘汰,所以Google和百度如此重视不是没有道理。像百度2010年就已经开始进行语音布局,深度神经网络技术(DNN),自然语言处理技术(NLP)以及百度多年的搜索技术积累,语音技术进入到例如手机百度这样的移动产品当中,成为语音输入的入口,足可以见重视程度。不过其实笔者认为,除了搜索外,移动端一切产品形态都离不开语音和图像交互,这源于移动本身的属性,不早点布局语音的互联网公司,早晚会在交互上吃亏。

说到北科大的特色专业,我觉得还挺多的,下面就给大家介绍一下吧。

首先第一个我推荐的是北科大的材料专业,我觉得材料专业算是北科大的王牌专业,就在全国排名都比较靠前的,而且北科大这方面是做得很好的,而且这方面的专家也很多,所以我推荐感兴趣的朋友们报考这个专业哦!

其次的话呢,我推荐咱们北科大的自动化专业,现在人工智能的趋势越来越明显,各行各业都在像这方面靠拢,我觉得咱们自动化的未来也是很不错的。

但这里的自动化并不是机械自动化,而是偏于控制方向的,学的东西都比较全面硬件软件都会涉及到,包括一些编程基础,工程制图,还有一些金工实习等。

现在自动化做得越来越好了,很多其他的专业的学生会选择转入自动化学院,而且现在自动化学院推出了新的人工智能专业,如果对高科技感兴趣的朋友们可以考虑哦~

最后呢,给大家推荐一下计算机科学与技术专业吧,这个专业呢,我认为近几年比较火的专业,分数呢也相对来说比较高,小伙伴们可以量力而行哦,这个专业算是最接近于互联网一类的,极大可能会做程序猿哦~小伙伴们对编程感兴趣的可以考虑一下哦!

以上便是我对于北科大特色专业的介绍,我推荐的这三个专业都很优秀,大家可以根据自己的兴趣来进行选择,祝大家都能选到自己喜欢的专业,希望我今天的回答对大家有帮助!

东莞市番茄汽车服务有限公司是2018-07-26在广东省东莞市注册成立的有限责任公司(非自然人投资或控股的法人独资),注册地址位于东莞市南城街道袁屋边社区宏二路1号蜂汇广场3栋921。

东莞市番茄汽车服务有限公司的统一社会信用代码/注册号是91441900MA522DMUXB,企业法人白帆,目前企业处于开业状态。

东莞市番茄汽车服务有限公司的经营范围是:新能源汽车零配件、汽车饰品、汽车零配件、汽车用品、汽车的销售;互联网信息服务;移动互联网技术研发和维护;代办机动车业务;代办驾驶证业务;拖车服务;汽车租赁;汽车相关技术咨询服务;机动车维修;汽车零配件设计服务;物联网技术研发;软件研发、技术转让、技术服务;信息技术咨询服务;品牌推广营销。(依法须经批准的项目,经相关部门批准后方可开展经营活动)〓。本省范围内,当前企业的注册资本属于一般。

东莞市番茄汽车服务有限公司对外投资0家公司,具有1处分支机构。

通过百度企业信用查看东莞市番茄汽车服务有限公司更多信息和资讯。

筒单地回答吧:我小时侯那年七八岁,我家自留地,和我四姨叔邻畔种地,同时都种的谷孑,人家的谷苗比我家的谷苗明显区别,人家谷苗黑绿翠,我家的谷苗黄没有长势,我回家问父亲,父亲说:人家耕地比我们深,种孑一样。密度合理,精耕细作,我们工夫不如人家,人工智能机器人不适应,循序渐近的过程,有些农作物需要大量的人工才能丰收,农村改革应地区制宜。

人工智能在各行各业里面的应用很广泛,在农业中同样也有很大的作用。
1气象预报
未来农业天气预报将会更加准确,ai广泛应用于农林牧渔业的天气预测,更加准时、准确,还可以针对天气状况提供科学的解决措施。
2农产品市场需求分析
基于大数据进行未来市场行情预测,减少市场产生因产品数量、地域、时间而供求不统一的现象。比如基于往年的市场行情等预测明年需要种植的农作物。
3农业灾害预测、减灾抗灾
分析可能会出现的自然灾害,比如蝗灾,火灾,台风及病虫害等。并提出科学的建在救灾方案,减少损失。
4农作物生长检测
检测作物或养殖畜牧业的动物生长情况,智能提供养殖方案。并检测可能出现的情况。减少人工干预。
5农业育种
用ai智能分析获取最佳育种方案,缩短育种时间,减少育种成本,提高效率、
6农业辅助
智能播种,施肥,喷药,收获等

随着我们进入机器学习的新技术时代,人工智能和农业正变得密不可分。它带来了令人兴奋的无限可能性:从种子发芽,到保持作物的完整性,再到实际的收获过程。
联合国估计,到2050年,全球人口将增加到97亿人以上,那时很多饥饿的人口需要养活。相比于人口的大量增长,耕地面积只会增加4%。因此,解决办法不是扩大农田来种植庄稼和饲养牲畜,而是更有效地利用现有的土地。

目前,全球20%的人口受雇于农业综合企业,这是一个价值3万亿美元的产业。但是我们如何进行这个变换呢?答案可以在人工智能和农业的交汇处找到。
1人工智能选种

如果我们想要有最好的作物,那么这一切都取决于我们种植的种子的基因。Monsanto公司现在正在使用人工智能扫描具有最理想特性的种子的DNA序列。
农民将不再需要投入时间和精力来进行种子的交叉变异实验,因为现在有计算机程序可以为他们进行这种分析。
种子本身有发芽率,或“种子休眠”,这意味着它们只有在特定条件下才会发芽和开始生长。研究人员可以利用人工智能找出种子发芽的最佳条件,如温度和湿度水平,使作物能够比预期的更早开始生长。这减少了等待时间,并可以使作物全年种植。
机器学习支持的图像分析的新应用,加上移动成像的自动化控制,可以测试种子的表型,以确定使用哪种种子最好。
这方面的实例可以在种子发芽技术中找到,该技术已经用于测试番茄和玉米等作物。
2通过人工智能反馈进行土壤管理

在世界各地种植农作物时,土壤营养也会发挥作用。通过特殊的算法,深度学习被带到这里的最前沿,这些算法可以帮助监测种植前和生长过程中土壤的 健康 状况
土壤退化和侵蚀也是影响农作物生长的重要因素,但这两个问题都可以用人工智能解决,就像PEAT公司在德国做过的实验那样。他们开发了一种能分析土壤缺陷的Plantix。加上无人机的视觉感知能力,它们可以探测到作物的生长区域,这些作物可能生长在有缺陷的土壤中,或会遭受区域里疾病和害虫的侵袭。
它通过对叶子成像,然后通过一个软件运行,这个软件可以区分正常和不 健康 的生长模式。更重要的是,软件会向农民提出解决问题的方法。
CropDiagnosis是另一个类似的应用程序,它可以用无人机扫描整个领域,并且评估土壤中灌溉和氮含量水平。
在美国,Trace Genomics也在追随他们的脚步,采用基于人工智能的技术来研究土壤弱点和作物缺陷。
3人工智能管理灌溉和用水

植物要想正常生长,就需要持续不断的水供应。在世界上雨水和淡水稀少或不可靠的地区,种植作物尤其困难。就像你的花园洒水器可以设置定时器一样,现代的人工智能灌溉方法比这更进一步。
他们可以通过农业环境中的机器学习技术实时跟踪土壤中的水分含量,从而准确地知道何时向作物提供水,以及如何合理节约水的消耗。这意味着农民有更多时间来做其他的重要工作,而不必费心亲自灌溉作物。
据估计,地球上约70%的淡水供应用于农业生产,因此更有效地管理淡水供应将对如何利用这一宝贵资源产生连锁反应。
4基于图像的养分和肥料使用解决方案

土壤本身并不总是为作物提供最好的营养,农民必须定期轮作。在过去,肥料是植物的主要肥料,但农业现代化带来了大量新的和创新的施肥方案。
农民花大量时间在地里以氮肥的形式为作物提供必要的营养,然而人工智能现在已经成为这个领域的主要参与者。
现代人工智能解决方案不仅可以检测出需要多少肥料才能减少浪费,而且还有可用的硬件来辅助运输过程。其中一个解决方案就是Rowbot。
这是一台基于图像的机器,它在作物生长期间收集植物数据,只向最需要化肥的作物提供肥料,从而提高原本收成较低的作物的产量。
由Bosch开发的Plantect是另一个智能的人工智能套件,它可以帮助农场从确定正确的阳光和湿度水平到无缝监控一切,并与物联网协同工作。
5人工智能可以预测天气状况

从潮湿的英格兰到太阳炙烤下的加利福尼亚,再到干旱肆虐的索马里,天气状况极大地影响了农作物的生长。
一季不下雨意味着成千上万的人在几个月内都会挨饿。然而,人工智能现在可以与机器学习相关的特殊算法结合使用——再加上卫星信息——以确保无论天气如何,农作物都不会歉收。
美国一家名为aWhere的公司正在利用这种人工智能技术来预测天气模式,使农民能够提前采取正确的措施。
它能测量一切:从太阳辐射到降水、温度推测和风速,以提供有关潜在作物生长和产量的准确数据。
例如,如果你知道两天后会有大量降雨,就不需要用昂贵的灌溉用水。或者,如果你知道接下来的几天会带来高温,那么你可以确保作物在早晨早些时候浇水,为温度上升做好准备,减少土壤蒸发。
这两者都可以被编程到AI机器解决方案中,当软件和硬件结合在一起时,农业技术可以提前为农户采取行动。
6创新的机器视觉来识别作物问题

一旦作物生长,就有必要保护它们的生长不受疾病和虫害的侵蚀。在这方面,人工智能也可以提供帮助。
你不仅可以在人工智能控制机器和条件的温室里种植作物,而且户外作物也可以从技术投入中受益。
跨国农业企业John Deere现在收购了Blue River Technology,作为其人工智能武器库的一部分。他们共同开发了一种“看和喷”的方法,利用人工智能机器学习和计算机视觉相结合,找出影响作物生长的杂草,然后将它们清除。
该公司发言人John May表示:“机器学习是Deere未来的一项重要能力,并且它认识到技术对我们客户的重要性。”
“看和喷”方法意味着,他们现在可以针对特定的杂草,提高作物产量,而不是以高昂的成本喷洒整株作物,而且还会伴随着对的 健康 影响。
7用人工智能技术监测杂草和害虫问题

人工智能传感器也正在开发中,利用图像传感技术来检测植物叶片的病害特征。这与通过人工智能机器进行的彩色成像有关。人工智能机器能够区分 健康 和患病的叶子,然后通过与机器人集成来去除它们。
微软开发人员也在使用同样的技术,他们合作开发了一个害虫预测界面,可以识别破坏农作物的昆虫。在很短的时间内,这将包括诊断和消灭害虫的实际远程机器视觉。
这项技术最多可以减少80%的化学物质的使用,而花在除草剂上的钱会减少90%。
杂草控制对农民来说非常重要,因为目前约有250个品种对现代除草剂具有抗药性,仅大豆和玉米作物上的杂草生长每年就造成400多亿美元的损失。
8预测正确的收获时间

几个世纪以来,农民们一直在考虑天气状况和作物的总体状况等因素,决定最佳收割时间
由于成像技术反馈给远程学习软件,人工智能现在带来了一个决定作物是否可以采摘的新元素。
该技术可以用白色和UVA型灯分析水果的成熟度,这意味着农民可以选择只采摘最成熟的水果或蔬菜,而把其他未成熟的水果留一段时间。
这可以在温室里小规模地进行,也可以在更大的规模上进行,使用直升机和无人机可以构建一个整体的田间管理地图。
9机械收割方法

现在让我们看看食物是如何挑选的。越来越多的农场工人不愿意日复一日地做重复性的、季节性的采摘水果和蔬菜的工作,预计在2014年至2024年间,这一比例将降至6%。
我们面临着这样的事实上:由于工人短缺,熟透的水果往往无法采摘,这意味着利润的损失。
根据农业综合企业的性质,一个农场大约40%的利润用于体力劳动和工资。
人工智能可以大幅减少这一数字,因为一旦购买了机器,它们就会随着时间的推移为自己买单。
有两个机器收割的例子来自Harvest CROO Robotics,它创造了采摘成熟草莓的硬件,以及拥有可以收割苹果园的机器的丰富技术。这种类型的人工智能将感知和动作结合在一起,因此自主机器可以看到需要收获什么,然后继续执行收获的动作。
10农场机器接受人工智能升级

现代农业往往使用各种各样的机器来保持生产效率。
从拖拉机和收割机到四轴脚踏车和运货卡车,机器是农业的重要组成部分,但是机器故障和持续的维护是一个严重但经常被忽视的影响利润的问题。像 汽车 这样的普通道路交通工具,现在正在用一组非同寻常的电子产品进行制造,从轮胎压力到油位,这些电子产品可以提供各种反馈。
未来的农业机械也将采用同样先进的监测系统。与其等着拖拉机在田里抛锚,还不如提前警告农民任何故障。与物联网相结合,这些物品甚至可以在问题出现之前就预先提醒和维修。
11人工智能无人机的崛起

展望未来,无人机已经在许多方面得到了应用,要使现有的无人机适应农业生产,所需要的只是硬件和软件的集成,这为这些飞行器提供了额外的用途。
到2027年,农业无人机的市场份额预计将接近5亿。无人驾驶拖拉机也将成为现实,在没有真人指导的情况下,通过编程使其以一定的速度行驶,同时以有效的方式执行特定任务。
12来自数据库的云共享信息可以帮助农民

由于“Alexa”类型的系统为农民的所有问题提供了解决方案,人工智能可以成为农民最好的朋友。
建立农业的知识数据库,并能向其询问从动物疾病到土壤质量的一切问题。这样的基础可以学习正确的解决方案和回答问题,然后可以有效地与业务中的其他人共享。
当农业在很大程度上实现自动化时,数据共享无疑将具有重要性。训练系统需要数据,特别是人工智能算法的数据非常有价值。
近年来,农业数据联盟(Agricultural Data Coalition)已成立,旨在帮助农民掌握信息和数据处理技术,以便从研究人员到农场主、农作物买家和保险公司等所有人都能共同努力,提高产量,从而提高所有人的利润。

得益于人工智能技术,总体产量得以提高,将人工智能应用于农业的最终目标是提高每平方英尺的作物产量。
产量的提高主要是通过模仿人类认知的算法实现的,在分析大数据时,将农业中的机器学习技术带到最前沿,并利用它做出有效的决策。这些数学人工智能公式可以通过决定作物从播种到收获的最佳 *** 作过程来帮助提高作物产量。
人工智能解决方案在农业领域的技术有很多,而且具有几乎无限的潜力。农业传感器可以看到外形,识别语音命令和 *** 作视觉感知能力来收集所需的数据。
信息管理系统控制收集的数据,并允许人工智能软件基于深度学习技术和机器学习通过预测分析做出决策。这些数据可以用于专门为农业综合企业制造的硬件,比如自动无人机和自动驾驶 汽车 。
充分利用收集到的数据,能为农民提供最好的服务。农业领域的人工智能解决方案要想在这一领域起飞,就需要在农业实践中集成人工智能的多方优势。

人工智能在各行各业里面的应用很广泛,在农业中同样也有很大的作用。

1气象预报

未来农业天气预报将会更加准确,ai广泛应用于农林牧渔业的天气预测,更加准时、准确,还可以针对天气状况提供科学的解决措施。

2农产品市场需求分析

基于大数据进行未来市场行情预测,减少市场产生因产品数量、地域、时间而供求不统一的现象。比如基于往年的市场行情等预测明年需要种植的农作物。
3农业灾害预测、减灾抗灾

分析可能会出现的自然灾害,比如蝗灾,火灾,台风及病虫害等。并提出科学的建在救灾方案,减少损失。
4农作物生长检测

检测作物或养殖畜牧业的动物生长情况,智能提供养殖方案。并检测可能出现的情况。减少人工干预。
5农业育种

用ai智能分析获取最佳育种方案,缩短育种时间,减少育种成本,提高效率、
6农业辅助

智能播种,施肥,喷药,收获等
农业智能势不可挡!

人工智能应用于农业是大势所趋,是方向,当然全面应用也许比较有个比较漫长的过程。养猪行业是农业大产业中最具标准化最具规模的行业,我认为人工智能应用于农业最先应该从养猪行业获得突破,事实现在京东、 科技 影子、猪场管家等都在这方面已经 探索 并有着应用

人工智能已经实现,比如无人机喷洒农药,自动售米机等。未来人工智能会广泛应用!从生产到销售。

人工智能在农业该如何发展,我来讲几点我的想法。

1种植户用人工智能可以通过网络、感应器掌握田地土壤信息,配合无人机播种、喷水、喷农药和撒肥料等。

2养殖户用人工智能可以通过监控、其他设备,监控鱼塘、养猪场等。

3人工智能在农村还可以陪伴老人和小孩,照顾他们,有意外可以随时报警,在外打工的年轻人可以通过人工智能掌控家里一切。

希望以上的回答可以帮上你。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12968002.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存