大数据这一概念早已有之,只是在较长的一段时间里处于沉寂状态。近年来,随着人们意识的增强以及观念的更新,大数据又重回人们的视线,并逐渐成为一股革新浪潮。大数据又名巨量资料,其涉及的数据量规模巨大,以至于无法通过主流工具在短时间内实现撷取与管理。对于这一部分海量、高增长且多样化的信息资产,只有运用更强的洞察力、决策力以及流程优化能力才能发现隐藏在数据背后的规律与价值,而可穿戴设备以及汽车中传感器应用的盛行,标志着大数据应用已经开始延伸到物联网领域。
在物联网中,对大数据技术的应用提出了更高的要求:首先,物联网中的数据量更大。物联网的组成节点除了人和服务器之外,也包括物品、设备、传感网等,数据流源源不断的产生,其数量规模远远大于互联网。其次,物联网中的数据传输速率更高。由于物联网与真实物理世界直接关联,要求实时访问以及控制相应的节点和设备,需要高数据传输速率予以支持。此外,物联网中数据的海量性也必然要求更高的传输速率。再者,物联网中的数据更加多样化。物联网涉及广泛的应用范围,从智能家居、智慧交通、智慧医疗、智慧物流到安防监控等,无一不是物联网的应用范畴。同时,在不同领域、不同行业,也需要面对不同类型和不同格式的数据,这使得物联网中的数据更加多样化。
针对物联网对海量数据的处理与应用需求,万物云开发团队在现有数据立方(DataCube)的基础之上,打造了一个针对智能硬件与物联网应用的大数据服务平台。该平台包括一个硬件数据服务接口,一个平台数据服务逻辑层以及一套面向应用的编程接口。物联网开发团队只需关注硬件及应用,就可通过万物云轻松处理物联网上的大数据。具体而言,万物云拥有如下特性。
丰富多样的应用功能。首先,万物云提供清晰而简明的编程实例、接口文档以及丰富的案例样本代码,以帮助开发者快速开发跨平台物联网应用,并通过社区论坛、微信和微博等社交平台提供全方位的技术支持。同时,万物云平台支持>
随着全球信息化的浪潮,信息化产业不断发展、延伸,已经深入了众多的企业及个人,SOA系统架构的出现,将给信息化带来一场新的革命。
纵观信息化建设与应用的历程,尽管出现过XML(标准通用标记语言的子集)、Unicode、UML等众多信息标准,但是许多异构系统之间的数据源仍然使用各自独立的数据格式、元数据以及元模型,这是信息产品提供商一直以来形成的习惯。各个相对独立的源数据集成一起,往往通过构建一定的数据获取与计算程序来实现,这样的做法需要花费大量工作。信息孤岛大量存在的事实,使信息化建设的ROI(投资回报率)大大降低,ETL成为集中这些异构数据的有效工具。ETL常用于从源系统中提取数据,将数据转换为与目标系统相兼容的格式,然后将其装载到目标系统中。数据经过获取、转换、装载后,要产生应用价值,还需另外的数据展现工具予以实现,如此复杂的数据应用过程,必定产生高昂的应用成本。
结构化的数据管理尚可通过以上方法,予以实现其集成应用。在非结构化的内容方面,这些具有挑战性的问题令人生畏。内容管理的应用方案基于不同的信息化应用系统,而且大部分是纵向的以组织部门为界限的。在内容管理市场中,经常使用来自不同厂商的产品来提供这些解决方案。即使是同一个厂商的产品,相互之间的功能也是经常重叠,并且无法集成。
随着信息化建设的深入,不同应用系统之间的功能界限已趋于模糊。同时企业资源计划系统和协同商务系统,又需要商业智能的分析展现数据提供用户 *** 作依据。
在激烈竞争且多变的市场环境下,企业的管理模式很难固化,应用传统的信息化软件,当企业要做出一些改动时需要面对巨大的挑战。
SOA系统架构的出现,信息化变革
微软大中华区服务部总经理辛儿伦介绍说,从上世纪60年代应用于主机的大型主机系统,到80年代应用于PC的CS架构,一直到90年度互联网的出现,系统越来越朝小型化和分布式发展。2000年WebService出现后,SOA被誉为下一代Web服务的基础框架,已经成为计算机信息领域的一个新的发展方向。
SOA的出现给传统的信息化产业带来新的概念,不再是各自独立的架构形式,能够轻松的互相联系组合共享信息。
可复用以往的信息化软件。基于SOA的协同软件提供了应用集成功能,能够将ERP、CRM、HR等异构系统的数据集成。
松散耦合方式,只要充分了解业务的进程,就可以不用编写一行代码,通过流程图实现一套我们自己的信息系统。就像已经给你准备好了砖瓦和水泥,只需要想好盖什么样的房子就可以轻松的盖起。加快开发速度,并且减少了开发和维护的费用。软件将所有的管理提炼成表单和流程,以记录管理的内容,指定过程的流转方向。
更简便的信息和数据集成。信息集成功能可以将散落在广域网和局域网上的文档、目录、网页轻松集成,加强了信息的协同相关性。同时,复杂、成本高昂的数据集成,也变成了可以简单且低成本实现的参数设定。创建了完全集成的信息化应用新领域。
在具体的功能实现上,SOA协同软件所实现的功能包括了知识管理、流程管理、人事管理、客户管理、项目管理、应用集成等,从部门角度看涉及了行政、后勤、营销、物流、生产等。从应用思想上看,SOA协同软件中的信息管理功能,全面兼顾了贯穿整个企业组织的信息化软硬件投入。尽管各种IT技术可以用于不同的用途,但是信息管理并没有任意地将信息分为结构化或者非结构化的部分,因此ERP等结构化管理系统并不是信息化建设的全部;同时,信息管理也没有将信息化解决方案划分为部门的视图,因此仅仅以部分为界限去构建软件应用功能的思想未必是不可撼动的。基于SOA的协同软件与ERP、CRM等传统应用软件相比,关键的不同在于它可以在合适的时间、合适的地点并且有正当理由向需要它提供服务的任何用户提供服务。
物联网雁飞格物dmp平台物网协同功能有物联网设备管理、物联网数据采集、数据分析和处理、物联网应用开发、物联网安全管理。具体如下:1、物联网设备管理:雁飞格物DMP平台可以管理大量的物联网设备,包括注册、授权、监控、配置、维护等。这些设备可以是传感器、执行器、控制器等,可以实现数据采集、控制、监测等功能。
2、物联网数据采集:平台可以通过采集物联网设备传输的数据来分析设备状态、控制设备等。可以支持多种协议,包括MQTT、CoAP等,支持实时数据采集和批量数据采集。
3、数据分析和处理:平台可以对采集到的数据进行分析和处理,包括数据清洗、数据存储、数据挖掘、数据建模等。可以通过可视化的方式展现数据分析结果。
4、物联网应用开发:平台提供应用开发的支持,包括API接口、应用模板、应用开发工具等。可以帮助开发人员快速开发出符合业务需求的应用程序。
5、物联网安全管理:平台可以提供物联网设备的安全管理机制,包括身份认证、访问控制、数据加密等。可以确保设备的安全性和数据的保密性。1状态数据——状态数据可以提供供应商和消费者关于物联网的实时动态数据。
2可供行为参考数据——有后续计划的状态数据。它依赖于能够改变系统实时状态的自动化技术,以及能够使人们改变行为习惯或者做长线投资的说服力。
3反馈数据——物联网创造了一个从消费者到生产者的反馈回路,在这里产品生产者可以通过适度水平的隐私、安全以及匿名性来检验产品的实际表现,并鼓励持续的产品改进和创新。
4定位数据——为商业和工业用户提供定位数据服务的领域,存在着更大的市场。
5个性化数据——不要用个人数据来拒绝个性化数据,挑战将围绕开发应用程序和产品规则而展开。
煤矿开拓设计、地测、采掘、运通、洗选、安全保障、生产管理等主要生产系统要具备自感知、自学习、自决策与自执行的基本能力。
这是煤矿智能化建设的基本要求,实现这一基本要求,依托的则是 物联网、云计算、大数据、人工智能、自动控制、移动互联网、装备机器化等现代矿山的智能开发技术。
物联网作为智能开发技术之一,不断颠覆传统技术架构,正在为IT基础设施、人工智能、区块链技术、智能机器人等领域的突破发展铺平道路。
精英数智 科技 股份有限公司
借助物联网技术
谋新求变
研发 “物联网数据服务平台”
夯实煤矿全链路数据底座
广泛应用各种感知技术
物联网上部署多种类型传感器,采集煤矿全域子系统数据,诸如煤炭、危化、燃气等企业各类子系统数据,仅煤炭行业数据就支持环境安全、灾害监测、人车安全、大型设备监控、生产设备监控、供电、运输等三十余个子系统数据的接入。
泛化融合互联网等多类网络
适应各种不同类型的网络和传输协议,可将传感器采集到的海量数据信息进行正确和及时的传输、保证数据不丢失、支持断点续传、数据传输延迟可缩小到秒级,可实现复杂网络的多级、多路数据分发传输。
智能处理数据实现感知控制
将采集数据与智能处理相结合,利用云计算、模型识别等各种智能技术,通过分析海量信息、加工和处理有意义的数据,扩充应用领域。
此外,物联网数据服务平台还以坚实的数据底座向上支撑煤矿生产的多场景需求,满足多产品智能管控的要求,诸如综采工作面、掘进工作面、瓦斯抽放管控、探放水智能监测系统、辅运系统、主运系统以及矿山综合管控系统等。
物联网数据服务平台
力破“数据孤岛”“数据烟囱”
实现数据融合互通共享
多源融合物联网数据、消除数据孤岛,做煤矿全域智慧生产联动和煤炭行业生产态势分析的数据基石。为大数据分析、人工智能提供体系化的全域数据支撑服务。
物联网数据服务平台
支撑煤矿全域数据治理工作
精英物联网数据服务平台自上线以来,完成了山西、山东、安徽省级和晋控集团级等区域的安全监控系统的数据治理。先后开展5次省级/集团级安全监控数据治理培训,在省/集团的矿端数据在线率可达90%以上;省/国家的数据在线率可达98%以上;数据质量显著提高,报警精确度大幅提升。
“物联网将是下一场工业革命的支柱
并成为近年来最具影响力的技术之一”
古老的煤炭开采行业
历经数千年 历史 的发展
正在数字经济时代焕发新生
下一步
物联网技术怎样革新破旧
引领煤矿智能化发展
我们躬身入局
一起见证这场 科技 蜕变
物联网的体系结构可以分为感知层,网络层和应用层三个层次。
感知层。是物联网发展和应用的基础,包括传感器或读卡器等数据采集设备、数据接入到网关之前的传感器网络。感知层以RFID、传感与控制、短距离无线通信等为主要技术,其任务是识别物体和采集系统中的相关信息,从而实现对“物”的认识与感知。
网络层。是建立在现有通信网络和互联网基础之上的融合网络,网络层通过各种接入设备与移动通信网和互联网相连,其主要任务是通过现有的互联网、广电网络、通信网络等实现信息的传输、初步处理、分类、聚合等,用于沟通感知层和应用层。目前国内通信设备和运营商实力较强,是我国互联网技术领域最成熟的部分。
应用层。是将物联网技术与专业技术相互融合,利用分析处理的感知数据为用户提供丰富的特定服务。应用层是物联网发展的目的。物联网的应用可分为控制型、查询型、管理型和扫描型等,可通过现有的手机、电脑等终端实现广泛的智能化应用解决方案。
资料拓展:
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
一、设备监控像监控或者调节建筑物恒温器这样的事情可以远程完成,甚至可以做到节约能源和简化设施维修程序。公路施工— 拌合站生产质量监控,可以远程监控生产数据,实时生产质量监控
这种物联网应用的美妙之处在于,它很容易实施,容易梳理性能基准,并得到所需的改进。
二、机器和基础设施维护
传感器可以放置在设备和基础设施材料上,例如公路施工,摊铺机和压路机上安装,实现物联网数字化施工,能够实时监测施工质量,减少施工成本。例如:ENH 公路施工质量监测系统,智能压实系统、铁路连续压实系统等等,都属于物联网在基础设施建设中的实例。
三、物流和追踪
运输业现在把传感器安装在移动的卡车和正在运输的各个独立部件上。从一开始中央系统就追踪这些货物直到结束。这么做可以防止货物在边远地区被盗窃,让企业供应链可以保持追踪,因为管理层可以在任何时间点清楚地看到车辆的位置(以及车辆应该在的位置)。
四、集装箱环境
同样是在物流和运输行业,运送装着易腐货物的集装箱是对周围环境条件进行监控的,如果超出温度或者湿度范围传感器会发出警报。此外,当集装箱被弄乱或者密封被破坏的时候,传感器也会发出警报。这个信息是实时通过中央系统直接发送给决策者的,这样情况可以得到补救——即使这些货物是在全球各地的运输途中。
五、机器管理库存
向消费者提供了各种商品的自助服务售卖机和便携式商店,现在可以在特定商品低于再订购水平的时候发送自动补充库存警报。这种做法可以为零售商节约成本,因为他们只需要在机器告诉他们需要补充库存的时候让现场工作人员进行补货。
六、网络数据用于营销
企业可以选择利用自己的分析,追踪客户在网络中的行为,或者他们可以将这个任务外包给在这个领域内有声誉的营销公司。在网站的导航模式中,访客来到或者来自你的网站,访客所使用的设备类型,以及其他关于访客的相关数据,可以聚合起来以更全面地了解。交易数据和物联网数据的结合,将会丰富你的营销分析及预测,可以快速实施。
七、识别危险网站
商业公司提供的安全服务,可以让网络管理员追踪机器对机器的交流,追踪来自公司计算机的互联网网站访问,揭示公司计算机定期访问的“危险”网站和IT地址。实践会降低网络遭受恶意软件和病du入侵的风险。因为这种“观察”服务是从云厂商那里提供的,所以实施简单,企业可以马上开始。
八、无人驾驶卡车
在气候条件恶劣和没有道路基础设施的边远地区,石油和天然气开采行业的企业正在使用无人驾驶卡车,这种卡车可以远程控制和远程通信。这降低了运营费用,因为你不用派人进入该领域,还可以避免在已知极其危险的区域发生事故。
九、WAN监控
企业可以很好地监控和修改他们的网络流量,但是当这个流量通过广域网或者互联网路由的时候,有时候似乎是在他们控制范围之外的。现在位于全球不同地点的办公室的边缘路由器,会显示出显著不同的服务质量,这取决于这个办公室是在新加坡或者里约热内卢。如果IT希望更好地监控互联网流量,那么可以购买商业服务,实时显示哪些地方放缓了,甚至可以重新路由流量以保持通信畅通。
十、GPS数据聚合
GPS数据聚合是应用最广泛的物联网数据收集方法之一。企业喜欢它是因为可以让他们统计人口数据、天气数据、基础结构数据、图形数据和任何可以并定位到特定地理位置的数据类型。很多厂商可以帮助你,以对业务有意义的方式聚合GPS数据。物联网中如何使用大数据
在瞬息万变的世界中,组织很难赶上不断涌现的新概念。但人们需要区分哪些技术和概念是有用的,哪些只是一种炒作。在数据分析领域,正是大数据引发了这个时代的质疑。而如今,当这个概念日益清晰时,一个新的应用浪潮即将到来:人们需要了解在物联网中如何使用大数据。
关于什么是大数据及其可带来的价值的热烈讨论已经开始消退。然而,当专家们开始大量使用大数据和物联网的技术组合时,人们又再一次试图定义物联网与大数据连接的方式。
物联网与大数据的接触点
简而言之,物联网是连接到互联网的设备网络。这些设备具有内置的传感器,可以生成数据并对外发送,从而可以相互通信,并与分析系统进行通信。
即使对物联网设备仍然很陌生,这个概念已经在人们的生活中找到了方向。设想一个智能家庭,它可以通过调节供暖和空调系统的运行模式来调节温度,可以开启和关闭照明系统,可以发出有关漏水或气体泄漏或外人入侵的信号。最重要的是,智能家居可以在没有户主参与的情况下做到这一点。
物联网业务的一个典型例子是机器监控,使用安装在不同机器部件上的多个传感器。这些传感器将有关温度、振动、压力、润滑等读数发送给分析系统,分析系统对其进行处理并识别一些隐藏的模式和相关性。如果系统识别出读数与某种故障模式相匹配,则会向维护团队发送即时警报。
以下将回答物联网如何与大数据相交的棘手问题。当一些技术正在炒作时,物联网可能是其中之一。实际上,物联网数据是大数据的类型之一,这使得大数据技术堆栈在所有阶段处理物联网数据都是一个很好的(但不是唯一的)选项。对于数据摄取,企业可以使用Apache Kafka,因为该技术支持数据流。Apache Hadoop生态系统是数据存储和处理历史数据的理想选择,而Apache Spark则非常适合近实时数据处理。
大数据使用案例中的物联网数据规则
而人们开始了解制造商所提供的用例。同时,也可以在其他行业了解物联网数据,了解物联网大数据用例。
医疗保健:在医疗保健领域,配戴移动应用技术的可穿戴传感器设备可以实现远程健康监测。该方法的工作原理如下:传感器监测特定患者的状态(心跳、体温、血压、呼吸率等),并将这些数据实时传送到云端,然后传送到应用程序。分析系统不断搜索所有患者物联网数据中的隐藏趋势,并试图找出可能引发并发症的模式。如果物联网的大数据分析显示某些令人担忧的症状,系统会立即向患者和医生发送警报。
零售:知名零售商亚马逊公司最近推出了一个新概念 - Amazon Go。这是一家没有收银员的商店,顾客不必排队等待购物。要进入商店只用扫描他们的智能手机即可。事实上,在这里采用的是物联网和大数据分析技术:商店里遍布传感器和摄像头,顾客在商店中购物,摄像头能够区分其中的每一个人,并且跟踪他们放入购物车或返回货架的所有产品。重量传感器提供了一个额外的控制点:他们可以认识到特定的产品已经不在货架。当顾客完成购物时,他们选择的所有产品都显示在真实和虚拟的篮子中,顾客可以离开商店,系统将在稍后收费。
毫无疑问,Amazon Go是一个有远见的概念。然而,零售业表现出更多脚踏实地的想法,例如智能物流技术,可以跟踪和优化路线,并识别每位卡车司机的行为模式。零售商还使用信标激活访问者的应用程序,并在访问者进入商店并通过信标时,推出相关产品优惠和促销活动。访客会因此感到满意,因为他们收到参加促销活动提供的个性化优惠。同时,信标对商店员工也有帮助,因为它们可以识别需要高质量服务的具有价值的客户。
银行业:银行业也从物联网中受益。银行正在努力获取客户全方位的视角,并提供无缝的客户体验。虽然这一切始于智能手机的积极参与,但物联网进一步扩展至可穿戴设备。例如,美国银行与FitPay公司合作进一步推动可穿戴支付技术。通过这种合作,持卡人将能够直接从他们的智能手表和其他可穿戴设备付款。银行将能够识别客户的行为和偏好。
语结
尽管围绕物联网进行了更多的炒作,但它只是大数据源其中之一。毫无疑问,这是一个有价值的领域,而且正在不断发展。如果企业已经实施了一些大数据解决方案,也许已经处理物联网数据,如果企业正计划采用大数据方案,希望以上描述的用例可以激发一些伟大的想法。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)